Serological markers associated with poor prognosis in positive Covid-19 patients
DOI:
https://doi.org/10.56294/saludcyt2022141Keywords:
Covid-19, Interleukin-6, Ferritin, D-Dimer, BiomarkersAbstract
Background: Covid-19 is a disease caused by a new coronavirus known as SARS-CoV-2. Spike viral protein binds to ACE2 body receptors and determines its infectivity. This process has many effects on the host, causing damage to the respiratory system and at the systemic level in general, evidenced in the elevation of laboratory markers such as Interleukin-6, Ferritin and D-Dimer.
Objective: To analyze biomarkers (Interleukin-6, Ferritin and D-Dimer) as factors of poor prognosis in Covid-19.
Methods: The data was collected from Covid-19 patients who also had results of IL-6, D-D and Ferritin obtained through the IESS Ambato hospital databases.
Findings: We reported 114 Covid-19 patients, whom we analyzed serological markers. D-D and IL-6 show a 1.34 OR (C.I.: 1.14 - 1.58) and 1.26 OR (C.I.: 1.11 - 1.43) respectively. Ferritin had a positive association in female population 1.11 OR (C.I.: 0.99 – 1.24), but in the male population, we didn’t find a significant association 3.91 OR (C.I.: 0.46 - 32.99). It was found that comorbidities were a protective factor with a negative association of 0.88 OR. Secondary causes of death in Covid-19 patients were cardiac arrest and pneumonia (23.1%).
Conclusion: IL-6, Ferritin and D-D markers were evaluated and proved valuable tools to predict poor prognosis in patients with Covid-19. These markers proceeded independently of other factors like comorbidities. The findings of this study may help manage other pathologies with a similar curse and to focus more on the importance at the laboratory level as a prognostic support
References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382:727-33. https://doi.org/10.1056/NEJMoa2001017.
2. Valverde AJS, Temoche CEM, Caicedo CRC, Hernández NBA, Padilla TMT. Covid-19: fisiopatología, historia natural y diagnóstico. Revista Eugenio Espejo 2021;15:98-114. https://doi.org/10.37135/ee.04.11.13.
3. Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020;371:m3862. https://doi.org/10.1136/bmj.m3862.
4. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses 2020;12:372. https://doi.org/10.3390/v12040372.
5. Mafham M, Baigent C. What is the association of COVID-19 with heart attacks and strokes? Lancet 2021;398:561-3. https://doi.org/10.1016/S0140-6736(21)01071-0.
6. Coomes EA, Haghbayan H. Interleukin-6 in Covid-19: A systematic review and meta-analysis. Reviews in Medical Virology 2020;30:e2141. https://doi.org/10.1002/rmv.2141.
7. Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med 2021;53:1116-23. https://doi.org/10.1038/s12276-021-00649-0.
8. Akira S, Taga T, Kishimoto T. Interleukin-6 in Biology and Medicine. En: Dixon FJ, editor. Advances in Immunology, vol. 54, Academic Press; 1993, p. 1-78. https://doi.org/10.1016/S0065-2776(08)60532-5.
9. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-8. https://doi.org/10.1007/s00134-020-05991-x.
10. Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, et al. Ferritin – from iron, through inflammation and autoimmunity, to COVID-19. Journal of Autoimmunity 2022;126:102778. https://doi.org/10.1016/j.jaut.2021.102778.
11. Cheng L, Li H, Li L, Liu C, Yan S, Chen H, et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal 2020;34:e23618. https://doi.org/10.1002/jcla.23618.
12. Carrillo Esper R, Peña Pérez C, Zepeda Mendoza AD, Meza Márquez JM, Neri Maldonado R, Meza Ayala CM, et al. Ferritina y síndrome hiperferritinémico: Su impacto en el enfermo grave; conceptos actuales. Revista de la Asociación Mexicana de Medicina Crítica y Terapia Intensiva 2015;29:157-66.
13. Weitz JI, Fredenburgh JC, Eikelboom JW. A Test in Context: D-Dimer. Journal of the American College of Cardiology 2017;70:2411-20. https://doi.org/10.1016/j.jacc.2017.09.024.
14. Rostami M, Mansouritorghabeh H. D-dimer level in COVID-19 infection: a systematic review. Expert Review of Hematology 2020;13:1265-75. https://doi.org/10.1080/17474086.2020.1831383.
15. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research 2020;191:145-7. https://doi.org/10.1016/j.thromres.2020.04.013.
16. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Internal Medicine 2020;180:934-43. https://doi.org/10.1001/jamainternmed.2020.0994.
17. World Health Organization. Technical guidance publications. WHO 2022. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance-publications (accedido 8 de diciembre de 2022).
18. Shu L, Wang X, Li M, Chen X, Ji N, Shi L, et al. Clinical characteristics of moderate COVID-19 patients aggravation in Wuhan Stadium Cabin Hospital: A 571 cases of retrospective cohort study. Journal of Medical Virology 2021;93:1133-40. https://doi.org/10.1002/jmv.26414.
19. Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev 2021;65:101205. https://doi.org/10.1016/j.arr.2020.101205.
20. O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2021;590:140-5. https://doi.org/10.1038/s41586-020-2918-0.
21. Barzola CMP, Amay CLP, Delgado KAC, Fierro LMM. Trastornos de la coagulación en pacientes infectados con coronavirus: Covid-19. RECIAMUC 2020;4:50-7. https://doi.org/10.26820/reciamuc/4.(3).julio.2020.50-57.
22. Sommerstein R, Kochen MM, Messerli FH, Gräni C. Coronavirus Disease 2019 (COVID‐19): Do Angiotensin‐Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect? Journal of the American Heart Association 2020;9:e016509. https://doi.org/10.1161/JAHA.120.016509.
23. Esler M, Esler D. Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? Journal of Hypertension 2020;38:781-2. https://doi.org/10.1097/HJH.0000000000002450.
24. Pirola CJ, Sookoian S. Estimation of Renin-Angiotensin-Aldosterone-System (RAAS)-Inhibitor effect on COVID-19 outcome: A Meta-analysis. Journal of Infection 2020;81:276-81. https://doi.org/10.1016/j.jinf.2020.05.052.
25. Elezkurtaj S, Greuel S, Ihlow J, Michaelis EG, Bischoff P, Kunze CA, et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci Rep 2021;11:4263. https://doi.org/10.1038/s41598-021-82862-5.
Published
Issue
Section
License
Copyright (c) 2022 Paola Micaela Lasluisa-Toalombo , Daniela Alexandra Rosero Freire , Angela Carolina Jácome-Lara , Luis Fabian Salazar-Garcés (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.