The role of robotic systems in improving surgical interventions in neurosurgery

Authors

  • Andrii Burachyk Luhansk State Medical University, Department of Surgery and Surgery of the FPE, Rivne, Ukraine Author https://orcid.org/0009-0004-9397-0985
  • Iryna Borysiuk International Humanitarian University, Faculty of Pharmacy and Nursery, Department of General and Clinical Pharmacology, Odesa, Ukraine Author https://orcid.org/0000-0003-2824-9118
  • Mykola Madinov State University of Information and Communication Technologies, Department of Telecommunication, Kyiv, Ukraine Author https://orcid.org/0009-0005-5910-8774
  • Volodymyr Babiak Municipal Institution of Higher Education “Rivne Medical Academy” of Rivne Region Council, Medical and Pharmaceutical Faculty, Department of Medical and Preventive Disciplines and Laboratory Diagnostics, Rivne, Ukraine Author https://orcid.org/0000-0001-6279-4190
  • Olena Babiak Municipal Institution of Higher Education “Rivne Medical Academy” of Rivne Region Council, Medical and Pharmaceutical Faculty, Department of Medical and Preventive Disciplines and Laboratory Diagnostics, Rivne, Ukraine Author https://orcid.org/0000-0001-8032-3675

DOI:

https://doi.org/10.56294/saludcyt20251197

Keywords:

Frameless stereotaxy, Frame-based stereotaxy, Biopsy, Brain tumor, Robotic system, Neurosurgery

Abstract

Introduction: Robotic systems can help to effectively perform complex tasks in neurosurgery that require high precision, but due to the difficulty of operative access and the peculiarities of the anatomy of the nervous system, their wide application is limited. Objective: evaluate the effectiveness, economic feasibility and prospects of using frame-based and frameless stereotaxis for brain biopsy. Methods: A total of 155 patients of the neurosurgery department underwent brain biopsy procedures. Depending on the biopsy methods 2 groups were distinguished: group 1 (frameless) 71 (45,8 %) patients and group 2 (frame-based) 84 (54,2 %) patients. Positive results of biopsy, postoperative complications and operative time were recorded and compared with data from studies on similar topics. Groups 1 and 2 didn’t differ in lesion localization, sex, age, length of the skin incision and diameter of the trepanation hole. Results: The diagnostic yield was 94,4 % in group 1 and 92,9 % in group 2 (p>0,05). The frequency of hemorrhage was 7,0 % versus 3,6 %, p=0,471, the frequency of edema was 2,7 % versus 1,2 %, p=0,593. The duration of the operation was shorter in group 1 (112 ± 13,6 min versus 137 ± 17,6 min, p<0,001). Conclusions: Both frameless and frame-based systems are effective, safe, and reliable tools that has excellent diagnostic yield, above 92 % low frequency of postoperative complications and high accuracy. The main benefits of frameless stereotactic biopsy is shorter operative time, comfort for patients, and less intraoperative fatigue for surgeon.

References

Khanna О, Beasley R, Franco D, DiMaio S. The path to surgical robotics in neurosurgery. Operative Neurosurgery. 2021;20(6):514-520. https://doi.org/10.1093/ons/opab065

Bai HX, Zou Y, Lee AM, Lancaster E, Yang L. Diagnostic value and safety of brain biopsy in patients with cryptogenic neurological disease: a systematic review and meta-analysis of 831 cases. Neurosurgery. 2015;77(2):283-295. https://doi.org/10.1227/NEU.0000000000000756

Ball T, González-Martínez J, Zemmar A, Sweid A, Chandra S, VanSickle D, Neimat JS, Jabbour P, Wu C. Robotic Applications in Cranial Neurosurgery: Current and Future. Operative Neurosurgery. 2021;21(6):371-379. https://doi.org/10.1093/ons/opab217

Pangal DJ, Cote DJ, Ruzevick J, Yarovinsky B, Kugener G, Wrobel B, Ference EH, Swanson M, Hung AJ, Donoho DA, Giannotta S, Zada G. Robotic and robot-assisted skull base neurosurgery: systematic review of current applications and future directions. Neurosurgical Focus. 2022;52(1):E15. https://doi.org/10.3171/2021.10.FOCUS21505

Chauvet D, Hans S, Missistrano A, Rebours C, Bakkouri WE, Lot G. Transoral robotic surgery for sellar tumors: first clinical study. Journal of Neurosurgery Publishing Group. 2017;127(4):941-948. https://doi.org/10.3171/2016.9.JNS161638

Quilici PJ, Wolber H, McConnell N. Operating costs, fiscal impact, value analysis and guidance for the routine use of robotic technology in abdominal surgical procedures. Surgical endoscopy. 2022;36:1433-1443. https://doi.org/10.1007/s00464-021-08428-8

Alshowaikh K, Karpinska-Leydier K, Amirthalingam J, Paidi G, Iroshani Jayarathna AI, Salibindla D, Ergin H. Surgical and patient outcomes of robotic versus conventional laparoscopic hysterectomy: a systematic review. Cureus. 2021;13(8):16828. https://doi.org/10.7759/cureus.16828

Hintschich CA, Fischer R, Seebauer C, Schebesch KM, Bohr C, Kühnel TA. Third hand to the surgeon: the use of an endoscope holding arm in endonasal sinus surgery and well beyond. European Archives of Oto-Rhino-Laryngolog. 2021;279:1891–1898. https://doi.org/10.1007/s00405-021-06935-x

Liu L, Mariani SG, De Schlichting E, Grand S, Lefranc M, Seigneuret E, Chabardes S. Frameless ROSA (R) robotassisted lead implantation for deep brain stimulation: technique and accuracy. Oper Neurosurg (Hagerstown). 2020;19:57-64. https://doi.org/10.1093/ons/opz320

Moran C, Sarangmat N, Gerard CS, Barua N, Ashida R, Woolley M, Pietrzyk M, Gill SS. Two hundred twenty-six consecutive deep brain stimulation electrodes placed using an “asleep” technique and the Neuro| MateTM robot for the treatment of movement disorders. Operative Neurosurgery. 2020;19(5):530-538. https://doi.org/10.1093/ons/opaa176

Philipp LR, Matias CM, Thalheimer S, Mehta SH, Sharan A, Wu C. Robot-assisted stereotaxy reduces target error: a meta-analysis and meta-regression of 6056 trajectories. Neurosurgery. 2021;88(2):222-233. https://doi.org/10.1093/neuros/nyaa428

Stumpo V, Staartjes VE, Klukowska AM, Golahmadi AK, Gadjradj PS, Schröder ML, Veeravagu A, Stienen MN, Serra C, Regli L. Global adoption of robotic technology into neurosurgical practice and research. Neurosurgical review. 2021;44:2675-2687. https://doi.org/10.1007/s10143-020-01445-6

Slavin KV. Neuronavigation in neurosurgery: current state of affairs. Expert Review of Medical Devices. 2008;5(1):1-3. https://doi.org/10.1586/17434440.5.1.1

Sajja KC, Sweid A, Al Saiegh F, Chalouhi N, Avery MB, Schmidt RF, Tjoumakaris SI, Gooch MR, Herial N, Abbas R, Zarzour H, Romo V, Rosenwasser R, Jabbour P. Endovascular robotic: feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting. Journal of NeuroInterventional Surgery. 2020;12(4):345-349. https://doi.org/10.1136/neurintsurg-2019-015763

Girishan S, Tripathi M, Garg A, Doddamani R, Bajaj J, Ramanujam B, Chandra PS. Enhancing outcomes of endoscopic vertical approach hemispherotomy: understanding the role of “temporal stem” residual connections causing recurrence of seizures. Journal of Neurosurgery: Pediatrics. 2019;25(2):159-167. https://doi.org/10.3171/2019.8.PEDS19148

Chumnanvej S, Pillai BM, Chalongwongse S, Suthakorn J. Endonasal endoscopic transsphenoidal approach robot prototype: A cadaveric trial. Asian Journal of Surgery. 2021;44(1):345-351. https://doi.org/10.1016/j.asjsur.2020.08.011

Guo Z, Leong MCW, Su H, Kwok KW, Chan DTM, Poon WS. Techniques for stereotactic neurosurgery: beyond the frame, toward the intraoperative magnetic resonance imaging–guided and robot-assisted approaches. World neurosurgery. 2018;116:77-87. https://doi.org/10.1016/j.wneu.2018.04.155

Kaushik A, Dwarakanath TA, Bhutani G, Srinivas D. Robot-based autonomous neuroregistration and neuronavigation: implementation and case studies. World Neurosurgery. 2020;134:e256-e271. https://doi.org/10.1016/j.wneu.2019.10.041

Kesserwan MA, Shakil H, Lannon M, McGinn R, Banfield L, Nath S, Alotaibi M, Kasper E, Sharma S. Frame-based versus frameless stereotactic brain biopsies: a systematic review and meta-analysis. Surgical Neurology International. 2021;12:52. https://doi.org/10.25259/sni_824_2020

Gessler F, Baumgarten P, Bernstock JD, Harter P, Lescher S, Senft C, ... Weise L. Assessment of molecular markers demonstrates concordance between samples acquired via stereotactic biopsy and open craniotomy in both anaplastic astrocytomas and glioblastomas. Journal of Neuro-Oncology. 2017;133:399-407. https://doi.org/10.1007/s11060-017-2448-2

Qin F, Huang Z, Dong Q, Xu X, Lu T, Chen J, Lu Z. Stereotactic biopsy for lesions in brainstem and deep brain: a single-center experience of 72 cases. Brazilian Journal of Medical and Biological Research. 2021;54:e11335. https://doi.org/10.1590/1414-431x2021e11335

Verploegh IS, Volovici V, Haitsma IK, Schouten JW, Dirven CM, Kros JM, Dammers R. Contemporary frameless intracranial biopsy techniques: Might variation in safety and efficacy be expected? Acta Neurochirurgica. 2015;157:2011-2016. https://doi.org/10.1007/s00701-015-2543-0

Khatab S, Spliet W, Woerdeman PA. Frameless image-guided stereotactic brain biopsies: emphasis on diagnostic yield. Acta neurochirurgica. 2014;156:1441-1450. https://doi.org/10.1007/s00701-014-2145-2

Lefranc M, Capel C, Pruvot-Occean AS, Fichten A, Desenclos C, Toussaint P, ... Peltier J. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. Journal of neurosurgery. 2015;122(2):342-352. https://doi.org/10.3171/2014.9.jns14107

Nishihara M, Kohmura E, Takeda N, Harada T, Kidoguchi K, Tatsumi S, Sasayama T. Diagnostic yield and morbidity by neuronavigation-guided frameless stereotactic biopsy using magnetic resonance imaging and by frame-based computed tomography-guided stereotactic biopsy. Surgical Neurology International. 2014;5(9):421. https://doi.org/10.4103/2152-7806.140211

Downloads

Published

2025-01-01

How to Cite

1.
Burachyk A, Borysiuk I, Madinov M, Babiak V, Babiak O. The role of robotic systems in improving surgical interventions in neurosurgery. Salud, Ciencia y Tecnología [Internet]. 2025 Jan. 1 [cited 2024 Dec. 26];5:1197. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1197