Appraisal of Microbial Indoor Air Quality in Applied Medical Sciences College

Authors

  • Mohamed Abdel-Monem El-Sakhawy Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia Author https://orcid.org/0000-0001-9494-339X

DOI:

https://doi.org/10.56294/saludcyt20251152

Keywords:

Indoor, Air quality, Bacteria, Fungi, Indoor-to-outdoor ratio, Identification, Microscopic, Macroscopic

Abstract

Introduction: human activities like talking, sneezing, coughing, walking, washing, and toilet use contribute to an increased airborne microbiological load. The air is full of various microorganisms, which act as a medium for their transmission or dissemination. This study aimed to determine the types and concentrations of bacterial and fungal aerosols, evaluate the indoor air quality, and determine the factors responsible for their presence in the College of Applied Medical Sciences building, PSAU, KSA.
Method: indoor microbial loads were evaluated by collecting 84 samples from different localities using the settle plate method. 
Results: the average indoor microbiological air ranges from 0 to 150,7 and 13,1 to 242,5 CFU per m3 for fungi and bacteria, respectively. In the indoor-to-outdoor ratio, the results recorded 0,033 to 0,067 and 0,022 to 0,049 for fungi and bacteria, respectively. A total of 282 bacteria were identified, 2 isolates belonging to Gram-positive cocci (Kocuria rhizophila 3,3 %, and Staphylococcus epidermidis 15 %), Gram-positive cocci (14 %), and Gram-positive rod belonging to Bacillus spp. (39 %). One isolate was identified as Sphingomonas paucimobilis (0,7 %). Fungal indoor isolates (n=48) were isolated; 46 isolates were filamentous fungi identified as 9(18,8 %) Aspergillus spp. (A. niger, A. terreus, A. ochraceus, and other Aspergillus spp.), 9(18,8 %) Alternaria spp., 8(16,7 %) Penicillium spp., 3(6,3 %) Fusarium spp., 2(4,2 %) Rhizopus spp., 2(4,2 %) Cladosporium spp., 1(2,1 %) Drechslera sp., and 12(25 %) different unknown species, in addition to two yeast isolates. 
Conclusions: the building is safe and suitable for the current number of students, and the building’s design is in the same condition.

References

1. Correction Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, Vollset SE, Ozgoren AA, Abdalla S, Abd Allah F, Aziz MI. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;385(9963):117-71.. DOI: https://doi.org/10.1016/S0140-6736(14)61682-2

2. Bing-Yuan, Zhang YH, Leung NHL, Cowling BJ, Yang ZF. Role of viral bioaerosols in nosocomial infections and measures for prevention and control. J Aerosol Sci. 2018 Mar;117:200-211. doi: 10.1016/j.jaerosci.2017.11.011. DOI: https://doi.org/10.1016/j.jaerosci.2017.11.011

3. Hargreaves M, Parappukkaran S, Morawska L, Hitchins J,Congrong H, Gilbert D. A pilot investigation into associations betweenindoor airborne fungal and non-biological particle concentrationsin residential houses in Brisbane.Sci Total Environ 2003;312: 89-101. DOI: https://doi.org/10.1016/S0048-9697(03)00169-4

4. Jabeen R, Kizhisseri MI, Mayanaik SN, Mohamed MM. Bioaerosol assessment in indoor and outdoor environments: a case study from India. Sci Rep. 2023;13(1):18066. Published 2023 Oct 23. doi:10.1038/s41598-023-44315-z DOI: https://doi.org/10.1038/s41598-023-44315-z

5. Heikkienen MSA, Hjelmroos-Koski MK, Haggblom MM, MacherJM. Bioaerosols. In: Ruzer LS, Harley NH, Eds. Aerosols Handbook.Boca Raton: CRC Press 2005; pp. 291-342.

6. Kumar P, Kausar MA, Singh AB, Singh R. Biological contaminants in the indoor air environment and their impacts on human health. Air Qual Atmos Health. 2021;14(11):1723-1736. doi:10.1007/s11869-021-00978-z. DOI: https://doi.org/10.1007/s11869-021-00978-z

7. Mandal J, Brandl H. Bioaerosols in indoor environment-a review with special reference to residential and occupational locations. The Open Environmental & Biological Monitoring Journal. 2011 Sep 28;4(1). DOI: https://doi.org/10.2174/1875040001104010083

8. Pepper IL, Gerba CP, Gentry TJ. Introduction to environmental microbiology. InEnvironmental microbiology 2015 Jan 1 (pp. 3-8). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-394626-3.00001-6

9. Can-Güven E. The current status and future needs of global bioaerosol research: a bibliometric analysis. Int J Environ Sci Technol (Tehran). 2022;19(8):7857-7868. doi: 10.1007/s13762-021-03683-7. DOI: https://doi.org/10.1007/s13762-021-03683-7

10. Douwes J, Thorne P, Pearce N, Heederik D. Bio-aerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann occupHyg 2003;47:187-200.

11. O′Riordan TG, Smaldone GC. Respiratory medical societies and the threat of bioterrorism. Thorax 2004;59:265-67 DOI: https://doi.org/10.1136/thorax.2003.015321

12. Stetzenbach LD, Buttner MP, Cruz P. Detection and enumeration of airborne biocontaminants. CurrOpinBiotechnol 2004;15:170-4. DOI: https://doi.org/10.1016/j.copbio.2004.04.009

13. Mbareche H, Morawska L, Duchaine C. On the interpretation of bioaerosol exposure measurements and impacts on health. J Air Waste Manag Assoc. 2019 Jul;69(7):789-804. doi: 10.1080/10962247.2019.1587552. DOI: https://doi.org/10.1080/10962247.2019.1587552

14. Kim KH, Kabir E, Jahan SA. Airborne bioaerosols and their impact on human health. J Environ Sci (China). 2018 May;67:23-35. doi: 10.1016/j.jes.2017.08.027. DOI: https://doi.org/10.1016/j.jes.2017.08.027

15. Pillarisetti A, Ye W, Chowdhury S. Indoor air pollution and health: Bridging perspectives from developing and developed countries. Annual Review of Environment and Resources. 2022 Oct 17;47:197-229. DOI: https://doi.org/10.1146/annurev-environ-012220-010602

16. Brągoszewska E. Exposure to bacterial and fungal aerosols: microorganism indices in a waste-sorting plant in Poland. International Journal of Environmental Research and Public Health. 2019 Sep;16(18):3308. DOI: https://doi.org/10.3390/ijerph16183308

17. Zheng Y, Chen H, Yao M, Li X. Bacterial pathogens were detected from human exhaled breath using a novel protocol. J Aerosol Sci. 2018 Mar;117:224-234. doi: 10.1016/j.jaerosci.2017.12.009. DOI: https://doi.org/10.1016/j.jaerosci.2017.12.009

18. Kanarek P, Bogiel T, Breza-Boruta B. Legionellosis risk-an overview of Legionella spp. habitats in Europe. Environ Sci Pollut Res Int. 2022 Nov;29(51):76532-76542. doi: 10.1007/s11356-022-22950-9. DOI: https://doi.org/10.1007/s11356-022-22950-9

19. Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon. 2022 Dec 1;8(12). DOI: https://doi.org/10.1016/j.heliyon.2022.e12620

20. Jones AM, Govan JR, Doherty CJ, Dodd ME, Isalska BJ, Stanbridge TN et al . Identification of airborne dissemination of epidemic multiresistant strains of Pseudomonas aeruginosa at a CF centre during a cross infection outbreak. Thorax 2003;58:525-527. DOI: https://doi.org/10.1136/thorax.58.6.525

21. Ma J, Han Y, Li L, Liu J. Distribution characteristics and potential risks of bacterial aerosol in waste transfer station. Journal of Environmental Management. 2023 Jan 15;326:116599. DOI: https://doi.org/10.1016/j.jenvman.2022.116599

22. Shams-Ghahfarokhi M, Aghaei-Gharehbolagh S, Aslani N, Razzaghi-Abyaneh M. Investigation on distribution of airborne fungi in outdoor environment in Tehran, Iran. J Environ Health Sci Eng. 2014 Mar 3;12(1):54. doi: 10.1186/2052-336X-12-54. DOI: https://doi.org/10.1186/2052-336X-12-54

23. Srikanth P, Sudharsanam S, Steinberg R. Bio-aerosols in indoor environment: composition, health effects and analysis. Indian J Med Microbiol. 2008 Oct-Dec;26(4):302-12. doi: 10.4103/0255-0857.43555. DOI: https://doi.org/10.1016/S0255-0857(21)01805-3

24. Gnat S, Łagowski D, Nowakiewicz A, Dyląg M. A global view on fungal infections in humans and animals: infections caused by dimorphic fungi and dermatophytoses. J Appl Microbiol. 2021 Dec;131(6):2688-2704. doi: 10.1111/jam.15084. DOI: https://doi.org/10.1111/jam.15084

25. Autrup JL, Schmidt J, Autrup H. Exposure to aflatoxin B1 in animal-feed production plant workers. Environ Health Perspect 1993;99:195-7. DOI: https://doi.org/10.1289/ehp.9399195

26. Rylander R. Airway Responsiveness and Chest Symptoms after Inhalation of Endotoxin or (1 →3)-β-D-Glucan. Indoor Built Environ 1996;5:106-11. DOI: https://doi.org/10.1159/000463694

27. Zain ME, Awaad AS, Razak AA, Maitland DJ, Khamis NE, Sakhawy MA. Secondary metabolites of Aureobasidium pullulans isolated from Egyptian soil and their biological activity. J Appl Sci Res. 2009 Dec 9;5(10):1582-91.

28. Prussin AJ 2nd, Garcia EB, Marr LC. Total Virus and Bacteria Concentrations in Indoor and Outdoor Air. Environ Sci Technol Lett. 2015;2(4):84-88. doi: 10.1021/acs.estlett.5b00050. DOI: https://doi.org/10.1021/acs.estlett.5b00050

29. Wamedo SA, Ede PN, Chuku A. Interaction between building design and indoor airborne microbial load in Nigeria.Asian JBiolSci2012; 5: 183-191. DOI: https://doi.org/10.3923/ajbs.2012.183.191

30. Kunwar A, Tamrakar S, Poudel S, Sharma S, Parajuli P. Bacteriological Assessment of the Indoor Air of Different Hospitals of Kathmandu District. Int J Microbiol. 2019 Apr 8;2019:5320807. doi: 10.1155/2019/5320807. DOI: https://doi.org/10.1155/2019/5320807

31. Aitken C and Jeffries DJ. Nosocomial Spread of Viral Disease. Clin. Microbiol. Rev. 2001;14:528-546. DOI: https://doi.org/10.1128/CMR.14.3.528-546.2001

32. Bonetta S, Bonetta S, Mosso S, Sampo S, Carraro E. Assessment ofmicrobiological indoor air quality in an Italian office buildingequipped with an HVAC system. Environ Monit Assess 2010; 161:473-83. DOI: https://doi.org/10.1007/s10661-009-0761-8

33. Ashuro Z, Husen Washo G, Diriba K. Indoor Air Quality in Hospital Settings [Internet]. Environmental Health Literacy Update - New Evidence, Methodologies and Perspectives. IntechOpen; 2023. Available from: http://dx.doi.org/10.5772/intechopen.1002033 DOI: https://doi.org/10.5772/intechopen.1002033

34. Bonadonna L, Briancesco R, Coccia AM. Analysis of Microorganisms in Hospital Environments and Potential Risks. Indoor Air Quality in Healthcare Facilities. 2017 Mar 24:53–62. doi: 10.1007/978-3-319-49160-8_5. DOI: https://doi.org/10.1007/978-3-319-49160-8_5

35. Hassan A, Zeeshan M. Microbiological indoor air quality of hospital buildings with different ventilation systems, cleaning frequencies and occupancy levels. Atmospheric Pollution Research. 2022 Apr 1;13(4):101382. DOI: https://doi.org/10.1016/j.apr.2022.101382

36. Sadrizadeh S, Yao R, Yuan F, Awbi H, Bahnfleth W, Bi Y, Cao G, Croitoru C, de Dear R, Haghighat F, Kumar P. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. Journal of Building Engineering. 2022 Oct 1;57:104908. DOI: https://doi.org/10.1016/j.jobe.2022.104908

37. Kraus M, Nováková P. Assessment of indoor air quality in university classrooms. InMATEC Web of Conferences 2019 (Vol. 279, p. 03012). EDP Sciences. DOI: https://doi.org/10.1051/matecconf/201927903012

38. de Gennaro G, Dambruoso PR, Loiotile AD, Di Gilio A, Giungato P, Tutino M, Marzocca A, Mazzone A, Palmisani J, Porcelli F. Indoor air quality in schools. Environmental chemistry letters. 2014 Dec;12:467-82. DOI: https://doi.org/10.1007/s10311-014-0470-6

39. Cheesbrough M. Medical laboratory manual for tropical countries. 2nd ed. Cambridge, UK: University Press Cambridge; 1991, p. 508-511.

40. Rajash B, Rattan LI. Essential of medical microbiology. 4th ed. New Delhi: Jayppe Brothers Medical Publishers; 2008, p. 415- 439.

41. Hayleeyesus S F, Manaye AM, 2014. Microbiological Quality of Indoor Air in University Libraries, Asian Pac J Trop Biomed, 4(Suppl 1): S312-S317 DOI: https://doi.org/10.12980/APJTB.4.2014C807

42. Shukla A, Srivastava S, Srivastava A, Srivastava T. Surveillance of Microbiological Environment of Operation Theaters. Cureus. 2021 Dec 20;13(12):e20525. doi: 10.7759/cureus.20525. PMID: 35070559; PMCID: PMC8765562. DOI: https://doi.org/10.7759/cureus.20525

43. Funke G, Monnet D, deBernardis C, von Graevenitz A, Freney J. Evaluation of the VITEK 2 system for rapid identification of medically relevant gram-negative rods. J Clin Microbiol. 1998 Jul;36(7):1948-52. doi: 10.1128/JCM.36.7.1948-1952.1998. DOI: https://doi.org/10.1128/JCM.36.7.1948-1952.1998

44. Bergey, D.H., Holt, J.G., 2000. Bergey’s manual of determinative bacteriology, ninth ed. Lippincott Williams & Wilkins, Philadelphia.

45. Alshraiedeh N, Atawneh F, Bani-Salameh R, Alsharedeh R, Al Tall Y, Alsaggar M. Identification and characterization of bacteria isolated from patients with cystic fibrosis in Jordan. Ann Med. 2022 Dec;54(1):2796-2804. doi: 10.1080/07853890.2022.2131282. DOI: https://doi.org/10.1080/07853890.2022.2131282

46. Smith D, Onions AH. The preservation and maintenance of living fungi. CAB international; 1994. DOI: https://doi.org/10.1079/9780851989020.0000

47. DeWitte-Orr SJ, Zorzitto JR, Sutton LP, Bols NC. Preferential induction of apoptosis in the rainbow trout macrophage cell line, RTS11, by actinomycin D, cycloheximide and double stranded RNA. Fish & Shellfish Immunology. 2005 Apr 1;18(4):279-95. DOI: https://doi.org/10.1016/j.fsi.2004.08.001

48. Yang CS, Heinsohn PA. Sampling and analysis of indoor microorganisms. John Wiley & Sons; 2007 Apr 20. DOI: https://doi.org/10.1002/0470112433

49. Windels CE. Current status of Fusarium taxonomy. Phytopathology. 1991 Sep 1;81(9):1048-51.

50. Ellis MB. Dematiaceous hyphomycetes. Commonwealth Mycological Institute. 1971;608. DOI: https://doi.org/10.1079/9780851986180.0000

51. Barron GL. The genera of Hyphomycetes from soil (Doctoral dissertation, University of Glasgow (United Kingdom),1984.

52. Pitt JI. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. 1979.

53. Barnett JA, Payne RW, Yarrow D. Yeasts: characteristics and identification, Cambridge University Press, 1990.

54. Domsch KH. Compendium of soil fungi. IHW-Verlag. 1993;1:630-43.

55. Deák T, Péter G. Developments in yeast taxonomy. Acta Alimentaria. 2013 Mar 1;42(1):55-68. DOI: https://doi.org/10.1556/AAlim.42.2013.1.6

56. Samson RA, Noonim P, Meijer M, Houbraken JA, Frisvad JC, Varga J. Diagnostic tools to identify black aspergilli. Studies in mycology. 2007 Sep 1;59(1):129-45. DOI: https://doi.org/10.3114/sim.2007.59.13

57. Oh HJ, Ma Y, Kim J. Human Inhalation Exposure to Aerosol and Health Effect: Aerosol Monitoring and Modelling Regional Deposited Doses. Int J Environ Res Public Health. 2020 Mar 16;17(6):1923. doi: 10.3390/ijerph17061923. DOI: https://doi.org/10.3390/ijerph17061923

58. Li A, Qiu X, Jiang X, Shi X, Liu J, Cheng Z, Chai Q, Zhu T. Alteration of the Health Effects of Bioaerosols by Chemical Modification in the Atmosphere: A Review. Fundamental Research. 2023 Dec 25.

59. Arif M, Katafygiotou M, Mazroei A, Kaushik A, Elsarrag E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment. 2016 Jun 1;5(1):1-1. DOI: https://doi.org/10.1016/j.ijsbe.2016.03.006

60. Hu XR, Han MF, Wang C, Yang NY, Wang YC, Duan EH, Hsi HC, Deng JG. A short review of bioaerosol emissions from gas bioreactors: Health threats, influencing factors and control technologies. Chemosphere. 2020 Aug;253:126737. doi: 10.1016/j.chemosphere.2020.126737. DOI: https://doi.org/10.1016/j.chemosphere.2020.126737

61. Yan C, Leng YL, Wu JT. Quantitative microbial risk assessment for occupational health of temporary entrants and staffs equipped with various grade PPE and exposed to microbial bioaerosols in two WWTPs. Int Arch Occup Environ Health. 2021 Aug;94(6):1327-1343. doi: 10.1007/s00420-021-01663-5. DOI: https://doi.org/10.1007/s00420-021-01663-5

62. Su CP, de Perio MA, Cummings KJ, McCague AB, Luckhaupt SE, Sweeney MH. Case Investigations of Infectious Diseases Occurring in Workplaces, United States, 2006-2015. Emerg Infect Dis. 2019 Mar;25(3):397-405. doi: 10.3201/eid2503.180708. DOI: https://doi.org/10.3201/eid2503.180708

63. Locke L, Dada O, Shedd JS. Aerosol Transmission of Infectious Disease and the Efficacy of Personal Protective Equipment (PPE): A Systematic Review. J Occup Environ Med. 2021 Nov 1;63(11):e783-e791. doi: 10.1097/JOM.0000000000002366. DOI: https://doi.org/10.1097/JOM.0000000000002366

64. Mannan M, Al-Ghamdi SG. Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure. Int J Environ Res Public Health. 2021 Mar 22;18(6):3276. doi: 10.3390/ijerph18063276. DOI: https://doi.org/10.3390/ijerph18063276

65. Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. Sci Total Environ. 2024 Feb 20;912:168478. doi: 10.1016/j.scitotenv.2023.168478. DOI: https://doi.org/10.1016/j.scitotenv.2023.168478

66. Fierer N, Liu Z, Rodríguez-Hernández M, Knight R, Henn M, Hernandez MT. Short-term temporal variability in airborne bacterial and fungal populations. Applied and environmental microbiology. 2008 Jan 1;74(1):200-7. doi: 10.1128/AEM.01467-07 DOI: https://doi.org/10.1128/AEM.01467-07

67. Meadow JF, Altrichter AE, Kembel SW, Kline J, Mhuireach G, Moriyama M, et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 2014; 24(1): 41-48. DOI: https://doi.org/10.1111/ina.12047

68. Andualem Z, Gizaw Z, Bogale L, Dagne H. Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidisciplinary respiratory medicine. 2019 Dec;14:1-7. DOI: https://doi.org/10.1186/s40248-018-0167-y

69. Chen H, Du R, Ren W, Zhang S, Du P, Zhang Y. The microbial activity in PM2. 5 in indoor air: as an index of air quality level. Aerosol and Air Quality Research. 2021 Feb;21(2):200101. DOI: https://doi.org/10.4209/aaqr.2020.03.0101

70. Atalay YA, Mengistie E, Tolcha A, Birhan B, Asmare G, Gebeyehu NA, Gelaw KA. Indoor air bacterial load and antibiotic susceptibility pattern of isolates at Adare General Hospital in Hawassa, Ethiopia. Front Public Health. 2023 Nov 2;11:1194850. doi: 10.3389/fpubh.2023.1194850. DOI: https://doi.org/10.3389/fpubh.2023.1194850

71. World Health Organization. WHO guidelines for indoor air quality: dampness and mould. Copenhagen, Denmark: World Health Organization; 2009. [Online] Available from: http://www. euro.who.int/__data/assets/pdf_file/0017/43325/E92645.pdf. [Accessed on 24th November, 2013]

72. Gizaw Z, Gebrehiwot M, Yenew C. High bacterial load of indoor air in hospital wards: the case of University of Gondar teaching hospital, Northwest Ethiopia. Multidiscip Respir Med. 2016 Jul 5;11:24. doi: 10.1186/s40248-016-0061-4. DOI: https://doi.org/10.4081/mrm.2016.318

73. Alonso-Blanco E, Gómez-Moreno FJ, Díaz-Ramiro E, Fernández J, Coz E, Yagüe C, Román-Cascón C, Narros A, Borge R, Artíñano B. Real-Time Measurements of Indoor–Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area. International Journal of Environmental Research and Public Health. 2023 Sep 25;20(19):6823. DOI: https://doi.org/10.3390/ijerph20196823

74. Madsen AM, Moslehi-Jenabian S, Frankel M, White JK, Frederiksen MW. Airborne bacterial species in indoor air and association with physical factors. UCL Open Environment. 2023;5. DOI: https://doi.org/10.14324/111.444/ucloe.000056

75. Madsen AM, Moslehi-Jenabian S, Islam MZ, Frankel M, Spilak M, Frederiksen MW. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants. Environ Res. 2018;160:282–91. DOI: https://doi.org/10.1016/j.envres.2017.10.001

76. Purty S, Saranathan R, Prashanth K, Narayanan K, Asir J, Sheela Devi C, Kumar Amarnath S. The expanding spectrum of human infections caused by Kocuria species: a case report and literature review. Emerg Microbes Infect. 2013 Oct;2(10):e71. doi: 10.1038/emi.2013.71. DOI: https://doi.org/10.1038/emi.2013.93

77. Dotis J, Printza N, Stabouli S, Papachristou F. Kocuria species peritonitis: although rare, we have to care. Perit Dial Int. 2015 Jan-Feb;35(1):26-30. doi: 10.3747/pdi.2013.00138. DOI: https://doi.org/10.3747/pdi.2013.00138

78. Otto M. Staphylococcus epidermidis—the'accidental'pathogen. Nature reviews microbiology. 2009 Aug;7(8):555-67. DOI: https://doi.org/10.1038/nrmicro2182

79. Madsen AM, Phan HU, Laursen M, White JK, Uhrbrand K. Evaluation of methods for sampling of Staphylococcus aureus and other Staphylococcus species from indoor surfaces. Annals of Work Exposures and Health. 2020 Nov;64(9):1020-34. DOI: https://doi.org/10.1093/annweh/wxaa080

80. Madsen AM, White JK, Nielsen JL, Keskin ME, Tendal K, Frederiksen MW. A cross sectional study on airborne inhalable microorganisms, endotoxin, and particles in pigeon coops–Risk assessment of exposure. Environmental Research. 2022 Mar 1;204:112404. DOI: https://doi.org/10.1016/j.envres.2021.112404

81. Guo K, Qian H, Zhao D, Ye J, Zhang Y, Kan H, Zhao Z, Deng F, Huang C, Zhao B, Zeng X. Indoor exposure levels of bacteria and fungi in residences, schools, and offices in China: A systematic review. Indoor air. 2020 Nov;30(6):1147-65. DOI: https://doi.org/10.1111/ina.12734

82. Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and environmental microbiology. 2002 Apr;68(4):1743-53. DOI: https://doi.org/10.1128/AEM.68.4.1743-1753.2002

83. Mostafa AM, Al-Fifi ZI, Alawlaqi MM, Al Abboud AM. Indoor air borne fungi in faculty of science in Aboarish, Jazan University, Saudi Arabia. J. Jazan Uni. Appl. Sci. Br. 2012;1(2):26-35.

84. Khan AH, Karuppayil SM. Fungal pollution of indoor environments and its management. Saudi journal of biological sciences. 2012 Oct 1;19(4):405-26. DOI: https://doi.org/10.1016/j.sjbs.2012.06.002

85. Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociological methods & research. 2004 Nov;33(2):261-304. DOI: https://doi.org/10.1177/0049124104268644

86. Jayaprakash B, Adams RI, Kirjavainen P, Karvonen A, Vepsäläinen A, Valkonen M, Järvi K, Sulyok M, Pekkanen J, Hyvärinen A, Täubel M. Indoor microbiota in severely moisture damaged homes and the impact of interventions. Microbiome. 2017 Dec;5:1-7. DOI: https://doi.org/10.1186/s40168-017-0356-5

87. Hegarty B, Dannemiller KC, Peccia J. Gene expression of indoor fungal communities under damp building conditions: implications for human health. Indoor air. 2018 Jul;28(4):548-58. DOI: https://doi.org/10.1111/ina.12459

88. Omebeyinje MH, Adeluyi A, Mitra C, Chakraborty P, Gandee GM, Patel N, Verghese B, Farrance CE, Hull M, Basu P, Lee K. Increased prevalence of indoor Aspergillus and Penicillium species is associated with indoor flooding and coastal proximity: a case study of 28 moldy buildings. Environmental Science: Processes & Impacts. 2021;23(11):1681-7. DOI: https://doi.org/10.1039/D1EM00202C

89. Shan Y, Wu W, Fan W, Haahtela T, Zhang G. House dust microbiome and human health risks. International Microbiology. 2019 Sep 19;22:297-304. DOI: https://doi.org/10.1007/s10123-019-00057-5

90. El-Sakhawy MA, El-Sehrawy MG, Waggiallah HA, Ibrahim AM, Ateya AA. Appraisal and characterization of candida load isolated from the oral cavity of smokers. Saudi Journal of Biological Sciences. 2023 Jun 1;30(6):103657. DOI: https://doi.org/10.1016/j.sjbs.2023.103657

Downloads

Published

2025-02-24

How to Cite

1.
El-Sakhawy MA. Appraisal of Microbial Indoor Air Quality in Applied Medical Sciences College. Salud, Ciencia y Tecnología [Internet]. 2025 Feb. 24 [cited 2025 Dec. 29];5:1152. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1152