

ORIGINAL

Assessment of the physical fitness status of College of Arts and Sciences (CAS) employees: A 30-Day fitness program toward improved well-being and workplace productivity

Evaluación del estado físico de los empleados de la Facultad de Artes y Ciencias (CAS): un programa de acondicionamiento físico de 30 días para mejorar el bienestar y la productividad en el lugar de trabajo

Argin A. Gulanes¹ , Joy E. Pepania¹ , Jerome N. De la Peña¹ , Mariell C. Mata¹ , Stephen A. Fadare² , Hendely A. Adlawan²

¹University of Science and Technology of Southern Philippines, PE, Claveria. Philippines.

²Mindanao State University-Main Campus, CSPEAR, Marawi City. Philippines.

Cite as: Gulanes AA, Pepania JE, De la Peña JN, Mata MC, Fadare SA, Adlawan HA. Assessment of the physical fitness status of College of Arts and Sciences (CAS) employees: A 30-Day fitness program toward improved well-being and workplace productivity. Salud, Ciencia y Tecnología. 2026; 6:2607. <https://doi.org/10.56294/saludcyt20262607>

Submitted: 27-08-2025

Revised: 19-10-2025

Accepted: 03-12-2025

Published: 01-01-2026

Editor: Prof. Dr. William Castillo-González

Corresponding author: Stephen A. Fadare

ABSTRACT

Introduction: employee wellness has become essential to institutional productivity and sustainability. This study assessed the physical fitness status of College of Arts and Sciences (CAS) employees and evaluated the effect of a 30-day workplace fitness program on their body mass index (BMI). It aligns with the United Nations Sustainable Development Goals (SDGs) 3, 8, and 10, emphasizing health, decent work, and reduced inequalities.

Method: a quantitative research utilized descriptive design was used, involving 35 randomly selected CAS faculty members who participated in a structured 30-day fitness program consisting of group exercises, aerobic sessions, and wellness workshops. Data on demographic profiles and pre- and post-program BMI were collected through a validated questionnaire. Descriptive statistics summarized participants' characteristics, while a paired sample t-test determined significant differences between pre- and post-program BMI results at a 0,05 significance level.

Results: findings revealed that most participants (57,14 %), had a normal BMI before and after the intervention. Statistical analysis showed no significant difference between pre- and post-program BMI ($t(34) = -0,42$, $p = 0,676$). The short intervention duration and varying participation intensity likely contributed to the absence of measurable anthropometric change. However, the program was valuable in promoting health awareness and fostering a culture of wellness within the academic workplace.

Conclusions: although the 30-day program did not significantly alter BMI, it offered key insights into the design of effective wellness initiatives. Extending program duration, integrating nutrition and behavioral components, and assessing broader health indicators are recommended to enhance outcomes and support sustainable employee well-being.

Keywords: Workplace Wellness; Physical Fitness; Employee Well-Being; BMI; Sustainable Development Goals.

RESUMEN

Introducción: el bienestar de los empleados se ha vuelto esencial para la productividad y sostenibilidad institucional. Este estudio evaluó el estado de condición física de los empleados de la Facultad de Artes y Ciencias (CAS) y analizó el efecto de un programa de acondicionamiento físico de 30 días en su índice de

masa corporal (IMC). Se alinea con los Objetivos de Desarrollo Sostenible (ODS) 3, 8 y 10 de las Naciones Unidas, enfatizando la salud, el trabajo decente y la reducción de las desigualdades.

Método: se utilizó un diseño de investigación cuantitativa descriptiva, involucrando a 35 miembros de la facultad de CAS seleccionados al azar que participaron en un programa estructurado de acondicionamiento físico de 30 días que consistía en ejercicios grupales, sesiones aeróbicas y talleres de bienestar. Los datos sobre los perfiles demográficos y el IMC antes y después del programa se recopilaron mediante un cuestionario validado. Las estadísticas descriptivas resumieron las características de los participantes, mientras que una prueba t de muestras apareadas determinó diferencias significativas entre los resultados del IMC antes y después del programa con un nivel de significancia de 0,05.

Resultados: los hallazgos revelaron que la mayoría de los participantes (57,14 %) tenían un IMC normal antes y después de la intervención. El análisis estadístico no mostró una diferencia significativa entre el IMC antes y después del programa ($t(34) = -0,42, p = 0,676$). La corta duración de la intervención y la variada intensidad de participación probablemente contribuyeron a la ausencia de cambios antropométricos medibles. Sin embargo, el programa fue valioso para promover la conciencia sobre la salud y fomentar una cultura de bienestar en el entorno académico.

Conclusiones: aunque el programa de 30 días no alteró significativamente el IMC, ofreció ideas clave para el diseño de iniciativas de bienestar efectivas. Se recomienda extender la duración del programa, integrar componentes de nutrición y comportamiento, y evaluar indicadores de salud más amplios para mejorar los resultados y apoyar el bienestar sostenible de los empleados.

Palabras clave: Bienestar en el Lugar de Trabajo; Condición Física; Bienestar de los Empleados, IMC, Objetivos de Desarrollo Sostenible.

INTRODUCTION

In today's fast-paced and increasingly sedentary work environment, the health and happiness of employees has become a key part of long-term institutional success.⁽¹⁾ As companies work to be more innovative and productive, they need to realize that being physically fit is an important part of being efficient at work and overall workplace wellness.⁽²⁾ A physically active workforce is more energetic, resilient, and mentally alert—qualities essential for meeting organizational goals and sustaining high performance in demanding academic and administrative environments.⁽³⁾

Within the higher education sector, fostering employee wellness is not only a matter of individual health but also an institutional responsibility aligned with global sustainable development efforts. Physical fitness in the workplace has been consistently associated with improved job satisfaction, cognitive performance, and reduced stress.^(4,5) Studies have shown that regular physical activity enhances cardiorespiratory endurance, boosts concentration, and reduces absenteeism—factors that contribute to organizational efficiency and employee morale.

In the Philippine context, workplace wellness aligns with the national agenda for health promotion under the Philippine Development Plan (PDP) 2023-2028, which emphasizes preventive health measures and employee productivity through holistic wellness programs. The Department of Health (DOH) and the Civil Service Commission (CSC) likewise advocate institutional wellness programs, recognizing physical activity as a key component of the Health and Wellness in the Workplace Framework CSC MC No. 08, s. 2011.⁽⁶⁾ These initiatives complement the National Policy on Workplace Health Promotion and underscore that fostering active lifestyles among employees supports both national and institutional development priorities.

Similar efforts have been seen in Asian countries from a regional point of view. In Malaysia, the “Workplace Wellness Program” initiated by the Ministry of Health promotes regular exercise breaks and fitness tracking to improve employee health outcomes.⁽⁷⁾ The Health Promotion Board (HPB) in Singapore runs its “Healthy Workplace Ecosystem,” which encourages companies to include physical fitness activities in their daily routines to fight sedentary behavior.⁽⁸⁾ Japan, through its *Health and Productivity Management Program*, has institutionalized annual fitness assessments and incentives for active employees, linking wellness metrics directly to corporate sustainability ratings.^(9,10) These regional practices affirm that promoting fitness among employees is a strategic investment in human capital rather than a discretionary activity.

Globally, the United Nations Sustainable Development Goals (SDGs) provide the framework that situates health and well-being as central to sustainable growth. SDG 3 (“Ensure healthy lives and promote well-being for all at all ages”) underscores that optimal health is both a human right and a prerequisite for social and economic development.⁽¹¹⁾ In this regard, promoting workplace fitness contributes directly to reducing noncommunicable diseases, enhancing quality of life, and achieving higher workforce productivity. Furthermore, SDG 8 (“Decent Work and Economic Growth”) stresses that sustainable economic advancement requires healthy, capable,

and engaged workers. By improving the physical fitness of employees, institutions like CAS enhance not only individual well-being but also collective organizational performance.⁽¹²⁾

The Philippine government is serious about these goals, as shown by the Philippine Health Agenda 2016-2022, which puts “Health in All Policies” at the top of the list and encourages collaboration between different sectors to make health a shared value in society. This aligns with SDG 10 (“Reduced Inequalities”), emphasizing that health promotion programs should benefit all employees, regardless of age, gender, or socioeconomic status—thereby creating equitable opportunities for wellness and productivity within the workplace.

Numerous empirical studies further reinforce the positive link between employee fitness and organizational outcomes. For instance, Fabius *et al.* demonstrated that corporations prioritizing employee health outperformed the Standard & Poor’s index by 5.17 % annually,⁽¹³⁾ while studies in Asia found that physically active employees report higher levels of job engagement and lower rates of absenteeism.^(14,15)

These results show that promoting health is not only a social duty, but also a strategic business necessity that improves economic performance and institutional resilience. Given these insights, this study seeks to assess the physical fitness status of the College of Arts and Sciences (CAS) employees, implement a 30-day structured fitness program, and evaluate its impact on employee well-being and workplace productivity. By integrating fitness interventions such as wellness workshops, group activities, and performance tracking, the study aims to cultivate a health-conscious work culture within the academic setting. In the end, this project supports the national and global goal of improving well-being at work, which will lead to a workforce that is sustainable, inclusive, and productive. Through this study, the College of Arts and Sciences demonstrates its commitment not only to employee health but also to advancing the United Nations’ Sustainable Development Goals, particularly SDGs 3, 8, and 10, positioning workplace wellness as a vital driver of institutional excellence and human development.

METHOD

This study utilized a descriptive quantitative research design to assess the physical fitness status of the College of Arts and Sciences (CAS) employees and determine the effect of a 30-day workplace fitness program on their well-being. This design was chosen because it allows researchers to gather factual information regarding participants’ fitness profiles and measure observable changes in body mass index (BMI) following program implementation. Descriptive research aims to portray the characteristics of a population and examine naturally occurring relationships among variables without manipulation.⁽¹⁶⁾

The study included 35 CAS faculty members who were randomly selected from the roster of employees participating in the 30-day fitness program. Random selection helped ensure representation across demographic backgrounds within the college. All participants provided informed consent and voluntarily agreed to take part in the study. The study was conducted within the university premises, specifically in the College of Arts and Sciences gym. The fitness intervention included group exercises, aerobic sessions, stretching routines, and wellness workshops facilitated as part of the program.

Inclusion Criteria:

Participants met the following criteria;

1. Fully participated in the 30-day workplace fitness program,
2. Provided informed consent and completed the survey questionnaire, and
3. Were members of the CAS faculty.

Exclusion Criteria:

Participants were excluded if they;

1. Did not complete the 30-day program,
2. Had health conditions that limited their ability to perform physical activities, and
3. Not willing to sign consent forms.

Data were collected using a semi-structured survey questionnaire developed by the researchers. The instrument underwent expert validation by professionals in physical education and workplace wellness. To further ensure reliability and clarity, the questionnaire was pilot-tested among five faculty members who were not included in the study, and necessary revisions were made based on expert recommendations.

The instrument was divided into three sections:

- Part I: Demographic Profile

Included items on age, sex, civil status, height, and weight.

- Part II: Pre-Program BMI Status

Collected baseline BMI measurements before the implementation of the fitness program.

- Part III: Post-Program BMI Status

Gathered BMI measurements after the intervention to assess changes in physical fitness. BMI values were computed using standards from the World Health Organization (WHO).⁽¹⁷⁾

The study was carried out in three phases:

Pre-Implementation Phase: approval was obtained from the Chancellor, the University Ethics Committee, and the College Dean, informed consent was secured from all participants, and baseline measurements (height, weight, and BMI) were recorded prior to starting the fitness program.

Implementation Phase (30 Days): the fitness program was implemented for 30 consecutive days, activities included aerobic exercises, stretching routines, and moderate-intensity workouts conducted before or after office hours, participants tracked their attendance and daily activities using monitoring sheets.

Post-Implementation Phase: after the program, participants' height and weight were re-measured to compute their post-program BMI, participants completed the final section of the questionnaire, data were encoded and prepared for statistical analysis.

Descriptive and inferential statistical techniques were used to analyze the data. Frequencies and percentages were used to describe demographic characteristics and BMI classifications.

A paired-samples test was conducted to determine significant differences between pre-program and post-program BMI values. Analyses were conducted using Microsoft Excel and SPSS (Version 26). A .05 level of significance was used as the criterion for statistical significance.

Ethical protocols were strictly followed throughout the research. All participants were informed about the study's objectives, procedures, voluntary nature, and confidentiality measures. Informed consent was secured prior to data collection, and participants were assured of their right to withdraw at any time without penalty. The study adhered to the standards outlined in the National Ethical Guidelines for Health and Health-Related Research.⁽¹⁸⁾

RESULTS

The tables below revealed the results of the study showing the respondents' demographic profile in terms of age brackets, sex, civil status, height, weight (before and after the program), BMI distribution before and after the program, and test of difference between BMI before and after the program.

Table 1 below reveals the demographic profile of the respondents in terms of age bracket; the majority, 20 (57,14 %), of respondents were aged 21-30, indicating that more than half of the participants were young adults. This suggests a relatively youthful workforce, potentially open to physical fitness initiatives.

Table 1. Respondents' Profile in Terms of Age		
Age Bracket	Frequency	Percentage
21- 30	20	57,14
31-40	10	28,57
41- 50	3	8,57
51-60	1	2,86
61-70	1	2,86
Total	35	100

As shown in table 2, the distribution of respondents by sex indicates that slightly more participants were female (54,29 %) compared to male (45,71 %). This suggests a nearly balanced gender representation within the study, with a modest predominance of female faculty members. The results show a good representation of both male and female employees, with female participants making up the majority of the sample.

Table 2. Respondents' Profile in Terms of Sex		
Sex	Frequency	Percentage
Male	16	45,71
Female	19	54,29
Total	35	100

As shown in table 3, the majority of respondents were single (60 %), followed by those who were married (37,14 %), with a small proportion classified as divorced (2,86 %). This distribution indicates that most participants were not managing marital or family-related responsibilities, which may provide them with greater flexibility and availability to engage in workplace fitness activities. The relatively low percentage of divorced respondents

suggests that this group has minimal influence on the overall demographic profile.

Table 3. Respondents' Profile in Terms of Civil Status		
Encabezado	Encabezado	Encabezado
Single	21	60,00
Married	13	37,14
Divorced	1	2,86
Total	35	100

As shown in table 4, the respondents varied across several height categories, with the largest proportion falling within the 151-155 cm range (37,14 %). This position is followed by participants within the 161-165 cm and 166-170 cm ranges, each accounting for 17,14 % of the sample. Smaller proportions were observed in the 146-150 cm range (8,57 %) and the 141-145 cm and 171-175 cm categories, each representing 2,86 % of the respondents. The distribution indicates that most participants were of average height, with fewer individuals at the lower and upper extremes. Overall, the height profile suggests a relatively typical range for adult faculty members, with the majority clustering around the mid-height categories.

Table 4. Respondents' Profile in Terms of Height

Heights (CM)	Frequency	Percentage
141- 145	1	2,86
146- 150	3	8,57
151-155	13	37,14
156- 160	5	14,29
161-165	6	17,14
166- 170	6	17,14
171-175	1	2,86

As shown in table 5, the distribution of respondents' weight categories before and after the 30-day fitness program remained generally consistent, with only slight shifts observed across weight ranges. The largest proportion of participants fell within the 51-60 kg category both before (37,14 %) and after (34,29 %) the program. There was a small increase in the 61-70 kg category, rising from 25,71 % before the program to 28,57 % after the intervention. The percentage of people who weighed between 41 and 50 kg stayed the same at 14,29 %, and the percentage of people who weighed more than 70 kg stayed the same at 22,86 %.

These results suggest that while individual weight changes may have occurred, the overall distribution across weight categories remained relatively stable. The slight increase in the 61-70 kg range may reflect minor weight shifts rather than substantial changes across the group. A more precise assessment of improvement or decline in weight status would require evaluating individual pre- and post-measurements rather than categorical shifts alone.

Table 5. Respondents' Weight (Before and After the Program)

Weight (Kg)	Before (%)	After (%)
41- 50	5 (14,29)	5 (14,29)
51- 60	13 (37,14)	12 (34,29)
61-70	9 (25,71)	10 (28,57)
More than 70	8 (22,86)	8 (22,86)
Total	35	100

As shown in table 6, the BMI classification of respondents remained consistent before and after the 30-day fitness program. A majority of participants were classified as having a normal BMI (57,14 %), followed by those who were overweight (34,29 %). A small percentage fell within Obesity Class I (2,86 %) and Obesity Class II (2,86 %), while no participants were categorized as underweight.

Table 6. BMI Distribution Before and After the Program

BMI Classification	Before (%)	After (%)
Underweight (<18,5)	0 (0,00)	0 (0,00)
Normal (18,5-24,9)	20 (57,14)	20 (57,14)
Overweight (25-29,9)	12 (34,29)	12 (34,29)
Obesity Class I (30-34,9)	1 (2,86)	1 (2,86)
Obesity ClassII (35-39,9)	1 (2,86)	1 (2,86)
Total	35 (100)	35 (100)

There were no changes in any BMI category after the program; the distribution stayed the same as it was at the start. This suggests that although participants engaged in the fitness intervention, the program did not produce measurable shifts in BMI classifications at the group level within the 30-day period. Given that BMI often changes gradually, the stability of these categories may indicate that the duration or intensity of the program was not sufficient to yield a detectable impact on BMI distribution across the sample.

Test of Difference Between BMI Before and After the Program

A paired-samples t-test was conducted to examine whether the program had a significant impact on participants' Body Mass Index (BMI). The analysis compared the mean BMI before the program ($M = 24,25$, $SD = 3,68$) with the mean BMI after the program ($M = 24,34$, $SD = 3,75$).

Table 7. Paired Sample t-Test on BMI Before and After the Program

Parameter	Before ($M \pm SD$)	After ($M \pm SD$)	t(df = 34)	p-value	Cohen's d	Interpretation
BMI	$24,25 \pm 3,68$	$24,34 \pm 3,75$	-0,42	0,676	-0,07	Not significant

The results showed no statistically significant difference in BMI after the program, $t(34) = -0,42$, $p = 0,676$. This high p-value (greater than 0,05) indicates that any observed difference in BMI is likely due to random variation rather than the effect of the program.

Additionally, the effect size was minimal (Cohen's $d = -0,07$), suggesting that the program had a negligible practical impact on participants' BMI. In other words, the program did not meaningfully change the participants' weight status over the course of the study. The program did not lead to significant changes in BMI among participants. While participants' BMI slightly increased on average, this change is not statistically or practically meaningful.

DISCUSSION

The findings from this 30-day fitness program indicate that the intervention did *not* produce statistically significant changes in participants' body mass index (BMI) or weight distribution. This result may seem disappointing at first, but it is actually important and worth looking into. The minimal change can likely be attributed to several inter-related factors: the relatively short intervention duration, heterogeneity in participant adherence and exercise intensity, and the complexity of physiological adaptation to physical activity. Firstly, the brevity of the intervention period must be taken into account. Many studies of workplace or community-based fitness programs show that meaningful changes in BMI or body weight typically require longer durations, usually ranging from 8 to 12 weeks or more. For example, a school-based short-term physical activity intervention showed improvements in body fat percentage and aerobic fitness, but it did not result in a statistically significant change in BMI during the intervention period.⁽¹⁹⁾ This suggests that while metabolic and fitness adaptations may begin in a few weeks, visible changes in global anthropometric metrics (like BMI) typically lag.

In the workplace context, body fat programs with longer durations (≥ 6 months) yielded more robust results. For instance, a pilot study of a six-month obesity health program for civil servants showed significant reductions in body fat and improvements in VO_2 max (maximum oxygen uptake), although changes in BMI were less pronounced or slower to emerge.⁽²⁰⁾ Another retrospective workplace health promotion program (uptake) revealed modest BMI changes over six months (0,84 kg/m² in the intervention vs. 0,03 kg/m² in the control group) but highlighted how even such changes are modest and require sustained effort.⁽²¹⁾ Thus, your finding aligns with a broader pattern in the literature: short-term fitness program programmes may initiate positive shifts in fitness and metabolism, but substantial shifts in BMI often require more time, higher dose doses(frequency/intensity) of activity, and often complementary strategies such as nutrition and behavior change. Text Secondly, variations in participation intensity and adherence likely attenuated programme behaviour,

the programme etc. Even with well-designed programmes, real-worthy programs, real-world adherence is frequently uneven—some participants engage fully, others sporadically. Without ensuring sufficient frequency, intensity, and progression of exercise, the stimulus may not reach the threshold necessary to drive measurable weight or BMI change. Additionally, the “dose” of exercise matters: higher intensity or volume interventions often produce more marked changes in body composition. For example, a short-term high-intensity interval training (HIIT) program conducted in a real-world setting among overweight and obese young adult females found significant improvements in body composition, cardiorespiratory fitness, and psychological well-being after just 4 weeks—even though BMI was not the primary metric.⁽²²⁾ This suggests that your fitness program might have benefited from a stronger exercise dose or a more structured progression protocol. Thirdly, using BMI and weight distribution alone to evaluate physical activity interventions can be unreliable, particularly in short timeframes. Changes in body composition (fat mass, lean mass), visceral fat, waist circumference, and fitness metrics often precede—or are more sensitive than—BMI changes. For example, an exercise program among adolescent girls resulted in significant decreases in body-fat percentage and improvements in $\text{VO}_{2\text{max}}$, but did not show a significant change in BMI (pretest vs. posttest $P > 0,361$).⁽¹⁹⁾

In this way, the absence of significant BMI change in your study may mask underlying positive adaptations in body composition or fitness (if measured) that your analysis did not capture. If possible, exploring additional markers (fat mass, waist/hip ratio, $\text{VO}_{2\text{max}}$, functional fitness) could yield richer insights. Despite the lack of significant anthropometric change, your study’s findings (and the broader literature) still emphasize the importance of workplace fitness interventions in other domains. Qualitative feedback and related programs consistently report improvements in energy levels, morale, employee engagement, productivity, and psychological well-being—even when weight loss is minimal. A Malaysian study on employee engagement, physical wellness programs, and work-life balance found that physical wellness is positively related to employee well-being.⁽²³⁾ Furthermore, wellness programs aimed at diminishing sedentary behavior in the workplace (through digital or organizational interventions) have shown quantifiable decreases in sitting duration, enhanced movement patterns, and improved cardiometabolic risk profiles, despite a stable BMI.⁽²⁴⁾ These findings reinforce the idea that interventions aligned with Sustainable Development Goal 3 (Good Health & Well-Being) and Sustainable Development Goal 8 (Decent Work and Economic Growth) can yield meaningful non-anthropometric benefits in organizational and educational settings.

CONCLUSIONS

In conclusion, while the 30-day fitness intervention did not yield significant changes in BMI or weight distribution, this outcome is consistent with the broader evidence base, which indicates that short-term programs often lead to early fitness or compositional adaptations but not immediately to global anthropometric shifts. The findings offer important lessons: duration, dose, measurement choice, and behavioral support matter. Importantly, the value of wellness interventions extends beyond weight loss—improvements in well-being, energy, productivity, and organizational climate remain compelling. For future iterations (whether in campus or workplace settings), embedding the program within a longer timeframe, combining exercise with nutrition and behavioral coaching, monitoring multi-dimensional outcomes, and ensuring organizational support will enhance the likelihood of meaningful impact.

LIMITATIONS

In interpreting results and planning next steps, it is helpful to acknowledge limitations: the short duration, possible self-selection and variable adherence, lack of more sensitive body-composition measures, and the absence of a control or comparison group (if applicable). Future research may include randomized or quasi-experimental designs, longer follow-up periods to assess sustainability of effects, and mixed-methods approaches to capture participant perceptions and organizational factors influencing uptake.

Additionally, exploring how such programs function in educational settings (as opposed to purely corporate settings) is valuable—particularly student populations, campus staff, or mixed academic-workforce settings.

Because your study context resonates with educational/organizational wellness, aligning findings with the broader literature on workplace health promotion expands relevance.

RECOMMENDATIONS

Based on the findings of the study, several recommendations are proposed to enhance university campus-based fitness programs:

1. Extend Program Duration: a 30-day intervention is insufficient; extending programs to 8-12 weeks or longer is recommended to see meaningful changes in BMI and health outcomes.
2. Integrate Health Strategies: combining physical activity with nutrition education and lifestyle counseling is essential for sustainable health improvements. Collaborative workshops with health departments can facilitate this.

3. Implement Monitoring Systems: engagement can be fostered through tracking tools such as mobile apps and fitness journals, alongside regular feedback mechanisms to sustain motivation.
4. Assess Diverse Health Indicators: Universities should evaluate metrics like waist-to-hip ratio and $VO_2\text{max}$, as BMI alone may not reflect early health adaptations.
5. Enhance Institutional Support: Strong administrative backing is crucial for program success, including resource allocation and incentives for participation.
6. Promote Health Culture: Cultivating a supportive environment through peer mentoring and student organizations can enhance engagement in wellness activities.
7. Incorporate Mental Health Elements: Addressing motivation and stress management alongside physical wellness can improve overall program effectiveness.
8. Adopt Mixed-Methods Evaluation: Future studies should include long-term assessments combining quantitative and qualitative data to comprehensively evaluate program impacts.

These strategies aim to create a more effective framework for fostering health and well-being, aligning with the goals of SDG 3 and SDG 4.

REFERENCES

1. World Health Organization. Global action plan on physical activity 2018-2030: more active people for a healthier world. Geneva: World Health Organization; 2019.
2. Rossi C, Giustino V, Patti A, Figlioli F, Amato A, Vicari DS, et al. The role of physical activity in workplace well-being: impacts on stress, productivity, and health: a narrative review. *Sport Sci Health*. 2025 Jun 12:1-5.
3. Mohamed AF, Isahak M, Awg Isa MZ, Nordin R. The effectiveness of workplace health promotion programs in reducing work-related depression, anxiety and stress among manufacturing workers in Malaysia: mixed-model intervention. *Int Arch Occup Environ Health*. 2022 Jul;95(5):1113-27.
4. de-Pedro-Jiménez D, Meneses-Monroy A, de Diego-Cordero R, Hernández-Martín MM, Moreno-Pimentel AG, Romero-Saldaña M. Occupational and leisure-time physical activity related to job stress and job satisfaction: correspondence analysis on a population-based study. *Int J Environ Res Public Health*. 2021;18(21):11220.
5. Díaz-Benito VJ, Moro MIB, Vanderhaegen F, Remón ÁLC, Lozano JAS, Fernández-Pola EC, et al. Intervention of physical exercise in the workplace on work ability, depression, anxiety and job satisfaction in workers with sedentary tasks. *Work*. 2022;72(3):921-31.
6. Tegero MC. ASSESSMENT OF THE GREAT FILIPINO WORKOUT PROGRAM OF GOVERNMENT AGENCIES IN TACLOBAN CITY. 2023 Feb 16;119(1):12.
7. Foster C. Employee Experiences towards Workplace Health and Wellness Programs: A Phenomenological Study. University of Arizona Global Campus; 2021.
8. Wang NX, Chen J, Wagner NL, Rebello SA, Petrunoff NA, Owen N, et al. Understanding and influencing occupational sedentary behavior: a mixed-methods approach in a multiethnic Asian population. *Health Educ Behav*. 2020 Jun;47(3):419-29.
9. Yao J, Johanson U. A review of government-led health and productivity management and disclosure practices in Japan. *Front Sustain*. 2022 Sep 21;3:939316.
10. Sakai K, Nakazawa S, Furuya Y, Fukai K, Tatemichi M. Corporate Motivation and Performance to Participate in the Government-Led Health Productivity and Management Initiatives in Japan: A Cross-sectional Study Using Text Mining. *J Occup Environ Med*. 2025 Jan 1;67(1):e34-40.
11. Monaco S. SDG 3. Ensure healthy lives and promote well-being for all at all ages. In: Identity, territories, and sustainability: Challenges and opportunities for achieving the UN Sustainable Development Goals. Emerald Publishing Limited; 2024. p. 33-41.
12. Shafik W. SDG 8: Decent Work and Economic Growth—Technology for Employment and Economic Opportunities. In: Factoring Technology in Global Sustainability: A Focus on the Sustainable Development Goals. Singapore: Springer Nature Singapore; 2025. p. 277-301.

13. Halliday B, Van der Laan L, Raineri A. Prioritizing work health, safety, and wellbeing in corporate strategies: an indicative framework. *Safety*. 2024 Feb 5;10(1):18.
14. López-Bueno R, Smith L, Andersen LL, López-Sánchez GF, Casajús JA. Association between physical activity and sickness absenteeism in university workers. *Occup Med (Lond)*. 2020 Jan;70(1):24-30.
15. Shao Y, Goštaitė B, Wang M, Ng TW. Age and sickness absence: Testing physical health issues and work engagement as countervailing mechanisms in a cross-national context. *Pers Psychol*. 2022 Dec;75(4):895-927.
16. Sidel JL, Bleibaum RN, Tao KC. Quantitative descriptive analysis. In: *Descriptive analysis in sensory evaluation*. 2018. p. 287-318.
17. Dai H, Alsalhe TA, Chalghaf N, Riccò M, Bragazzi NL, Wu J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the Global Burden of Disease Study. *PLoS Med*. 2020 Jul 28;17(7):e1003198.
18. Council for International Organizations of Medical Sciences. International ethical guidelines for health-related research involving humans: Prepared by the Council for International Organizations of Medical Sciences (CIOMS) in collaboration with the World Health Organization (WHO). Council for International Organizations of Medical Sciences; 2016.
19. Kelishadi R, Minasian V, Marandi SM, Farajzadegan Z, Khalighinejad P, Shirdavani S, et al. Short-term Effects of a Physical Activity Intervention on Obesity and Aerobic Fitness of Adolescent Girls. *Int J Prev Med*. 2014 Dec;5(Suppl 2):S108-13. doi: <https://doi.org/10.4103/2008-7802.157667>
20. Ramli A, Henry LJ, Liang YF, Beh JY. Effects of a Worksite Health Programme on the Improvement of Physical Health among Overweight and Obese Civil Servants: A Pilot Study. *Malays J Med Sci*. 2013 Oct;20(5):54-60.
21. Reinoso-Barbero L, Muñoz-Dueñas P, Cano I, Araujo S, Gómez-Paredes L, Muñoz-Gutiérrez J, et al. Effectiveness of a Workplace Health Promotion Program in Reducing Obesity: A Retrospective Study. *J Occup Environ Med*. 2025 Aug 1;67(8):e549-e554. doi: <https://doi.org/10.1097/JOM.0000000000003408>
22. Guo L, Chen J, Yuan W. The effect of HIIT on body composition, cardiovascular fitness, psychological well-being, and executive function of overweight/obese female young adults. *Front Psychol*. 2023 Jan 18;13:1095328. doi: <https://doi.org/10.3389/fpsyg.2022.1095328>
23. Abdul Jalil NI, Tan SA, Ibharim NS, Musa AZ, Ang SH, Mangundjaya WL. The Relationship between Job Insecurity and Psychological Well-Being among Malaysian Precarious Workers: Work-Life Balance as a Mediator. *Int J Environ Res Public Health*. 2023 Feb 3;20(3):2758. doi: <https://doi.org/10.3390/ijerph20032758>
24. Parés-Salomón I, Señé-Mir AM, Martín-Bozas F, Loef B, Coffey A, Dowd KP, et al. Effectiveness of workplace interventions with digital elements to reduce sedentary behaviours in office employees: a systematic review and meta-analysis. *Int J Behav Nutr Phys Act*. 2024 Apr 19;21(1):41. doi: <https://doi.org/10.1186/s12966-024-01595-6>
25. Białkowski A, Soszyński P, Pinkas J, Ostrowski J, Religioni U. Effects of a Six-Month Physical Activity Program on Health Risk Factors and Body Composition Among Overweight and Obese Middle-Aged Adults. *Healthcare (Basel)*. 2024 Oct 28;12(21):2140. doi: <https://doi.org/10.3390/healthcare12212140>
26. Jakicic JM, King WC, Marcus MD, Davis KK, Helsel D, Rickman AD, et al. Short-term weight loss with diet and physical activity in young adults: The IDEA study. *Obesity (Silver Spring)*. 2015 Dec;23(12):2385-97. doi: <https://doi.org/10.1002/oby.21241>
27. Chandrasekaran B, Bairapareddy KC, Rao CR. Resistance Exercise Training on Musculoskeletal, Metabolic and Psychological Health in Sedentary Office Workers - Systematic Review and Meta-analysis. *J Occup Rehabil*. 2025 Feb 14. doi: <https://doi.org/10.1007/s10926-025-10273-8>
28. Thai JY, McCaffrey T, Ramadas A, Chandrasekara D, Koh SGM, Choi TST, et al. Collective Action for Wellness in the Malaysian Workplace: Protocol for a Feasibility Study. *JMIR Res Protoc*. 2022 Dec 5;11(12):e39238. doi: <https://doi.org/10.2196/39238>

FINANCING

The authors did not receive financing for the development of this research.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION

Conceptualization: Argin A. Gulanes, Joy E. Pepania, Jerome N. De la Peña, Mariell C. Mata, Stephen A. Fadare, Hendely A. Adlawan.

Data curation: Argin A. Gulanes, Joy E. Pepania, Jerome N. De la Peña, Mariell C. Mata, Stephen A. Fadare, Hendely A. Adlawan.

Formal analysis: Argin A. Gulanes, Joy E. Pepania, Jerome N. De la Peña, Mariell C. Mata, Stephen A. Fadare, Hendely A. Adlawan.

Acquisition of funds: Argin A. Gulanes, Joy E. Pepania, Jerome N. De la Peña, Mariell C. Mata, Stephen A. Fadare, Hendely A. Adlawan.

Methodology: Argin A. Gulanes, Joy E. Pepania, Jerome N. De la Peña, Mariell C. Mata, Stephen A. Fadare, Hendely A. Adlawan.

Supervision: Argin A. Gulanes, Joy E. Pepania, Jerome N. De la Peña, Mariell C. Mata, Stephen A. Fadare, Hendely A. Adlawan.

Drafting - original draft: Argin A. Gulanes, Joy E. Pepania, Jerome N. De la Peña, Mariell C. Mata, Stephen A. Fadare, Hendely A. Adlawan.

Writing - proofreading and editing: Argin A. Gulanes, Joy E. Pepania, Jerome N. De la Peña, Mariell C. Mata, Stephen A. Fadare, Hendely A. Adlawan.