Salud, Ciencia y Tecnología. 2026; 6:2560 doi: 10.56294/saludcyt20262560

SYSTEMATIC REVIEW

Protocol for preventing delirium in critically ill patients in intensive care units

Protocolo para prevenir el delirium en pacientes críticos en unidades de cuidados intensivos

Joseph Fernando Zambrano-Requelme^{1,2} ⋈, María Fernanda Maya-Maldonado^{1,3} ⋈, Carol Yuleisbi Moncada-Yanza^{1,4} ⋈, María José Sagal-Rodríguez^{1,5,6} ⋈, Scarlet Charlotte Angel Lino^{1,2} ⋈, Jeannette Mercedes Acosta Nuñez^{1,7,8} ⋈

Cite as: Zambrano Requelme JF, Maya-Maldonado M-M, Carol Yuleisbi Moncada-Yanza CY, Sagal-Rodríguez MJ, Angel Lino SC, Acosta Nuñez JM. Protocol for preventing delirium in critically ill patients in intensive care units. Salud, Ciencia y Tecnología. 2026; 6:2560. https://doi.org/10.56294/saludcyt20262560

Submitted: 20-08-2025 Revised: 23-10-2025 Accepted: 16-11-2025 Published: 01-01-2026

Editor: Prof. Dr. William Castillo-González

Corresponding Author: Joseph Fernando Zambrano-Requelme ⊠

ABSTRACT

Introduction: delirium is an acute neurocognitive disorder commonly seen in intensive care units (ICUs), associated with increased mortality, prolonged hospital stays, functional impairment, and long-term cognitive sequelae. Its timely identification and the implementation of preventive interventions continue to be a challenge for healthcare teams, especially nurses, given their central role in monitoring critically ill patients.

Objective: to identify and analyze evidence-based protocols for the prevention of delirium in critically ill patients in intensive care units, with the aim of synthesizing the most effective strategies and strengthening evidence-based critical care.

Method: a systematic review of the literature was conducted following the PRISMA 2020 guidelines. Studies were searched for in PubMed, Scopus, Web of Science, Cochrane Library, and SciELO. Studies published between 2020 and 2025, in English and Spanish, that addressed prevalence, risk factors, diagnostic methods, or interventions for the prevention and management of delirium in adults in the ICU were included. The selection was made through independent evaluation by two reviewers and consensus resolution. The risk of bias was assessed using validated tools (RoB2, ROBINS-I, AMSTAR-2, QUADAS-2).

Results: fifty-three studies were included, including clinical trials, cohorts, observational studies, systematic reviews, and instrument validations. The most common risk factors were advanced age, deep sedation, benzodiazepine use, prolonged mechanical ventilation, metabolic disturbances, and sleep deprivation. Non-pharmacological interventions—especially ABCDE/ABCDEF bundles, early mobilization, cognitive reorientation, sensory environment control, and family involvement—were most effective in preventing delirium. Pharmacological interventions (omega-3, minocycline, dexmedetomidine) showed promising but heterogeneous results. The CAM-ICU, ICDSC, and Nu-DESC tools were the most widely used for diagnosis.

Conclusions: delirium is a preventable syndrome that requires a comprehensive strategy based primarily on non-pharmacological interventions, continuous assessment, and active participation by the nursing team. The available evidence reaffirms the effectiveness of care bundles, early mobilization, and a multicomponent

¹Universidad Estatal de Milagro. Posgrado. Maestría en Enfermería con mención en Cuidado Crítico. Milagro, Ecuador.

²Universidad Metropolitana Sede Machala, Machala, Ecuador.

³Sociedad de Lucha contra el Cáncer. Núcleo de Solca, Machala, Ecuador.

⁴Ministerio de Salud Pública. Coordinación Zonal 7. Loja, Ecuador.

⁵Ministerio de Salud Pública. Hospital General Teófilo Dávila. Machala, Ecuador.

⁶Clínica Hospital San Marcos. El Oro, Ecuador.

⁷Ministerio de Salud Pública. Hospital General Docente Ambato. Ambato, Ecuador.

⁸Universidad Técnica de Ambato. Dirección de Investigación y Desarrollo. Facultad de Ciencias de la Salud. Ambato, Ecuador.

^{© 2026;} Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original sea correctamente citada

approach. Despite advances, limitations persist regarding the use of specific drugs and the standardization of diagnostic protocols. It is recommended to strengthen evidence-based practices and promote multicenter research evaluating innovative interventions and their long-term effects.

Keywords: Delirium; Critical Care; Clinical Protocols; Disease Prevention; Critical Care Nursing.

RESUMEN

Introducción: el delirium es una alteración neurocognitiva aguda frecuente en las Unidades de Cuidados Intensivos (UCI), asociada con mayor mortalidad, estancias prolongadas, deterioro funcional y secuelas cognitivas a largo plazo. Su identificación oportuna y la aplicación de intervenciones de prevención continúan siendo un desafío para los equipos de salud, especialmente para enfermería, por su rol central en la vigilancia del paciente crítico.

Objetivo: identificar y analizar los protocolos basados en evidencia científica para la prevención del delirium en pacientes críticos en Unidades de Cuidados Intensivos, con el propósito de sintetizar las estrategias más efectivas y fortalecer el cuidado crítico basado en evidencia.

Método: se realizó una revisión sistemática de la literatura siguiendo las directrices PRISMA 2020. Se buscaron estudios en PubMed, Scopus, Web of Science, Cochrane Library y SciELO. Se incluyeron estudios publicados entre 2020 y 2025, en inglés y español, que abordaran prevalencia, factores de riesgo, métodos diagnósticos o intervenciones para la prevención y manejo del delirium en adultos en UCI. La selección se realizó mediante evaluación independiente por dos revisores y resolución por consenso. El riesgo de sesgo se evaluó con herramientas validadas (RoB2, ROBINS-I, AMSTAR-2, QUADAS-2).

Resultados: se incluyeron 53 estudios entre ensayos clínicos, cohortes, estudios observacionales, revisiones sistemáticas y validaciones de instrumentos. Los factores de riesgo más frecuentes fueron la edad avanzada, sedación profunda, uso de benzodiacepinas, ventilación mecánica prolongada, alteraciones metabólicas y privación del sueño. Las intervenciones no farmacológicas —especialmente los bundles ABCDE/ABCDEF, la movilización temprana, la reorientación cognitiva, el control del ambiente sensorial y el involucramiento familiar— mostraron mayor efectividad en la prevención del delirium. Las intervenciones farmacológicas (omega-3, minociclina, dexmedetomidina) presentaron resultados promisorios pero heterogéneos. Las herramientas CAM-ICU, ICDSC y Nu-DESC fueron las más utilizadas para el diagnóstico.

Conclusiones: el delirium es un síndrome prevenible que requiere una estrategia integral basada principalmente en intervenciones no farmacológicas, evaluación continua y participación activa del equipo de enfermería. La evidencia disponible reafirma la efectividad de los bundles de cuidado, la movilización temprana y el abordaje multicomponente. A pesar de los avances, persisten limitaciones respecto al uso de fármacos específicos y la estandarización de protocolos diagnósticos. Se recomienda fortalecer las prácticas basadas en evidencia y promover investigaciones multicéntricas que evalúen intervenciones innovadoras y sus efectos a largo plazo.

Palabras clave: Delirio; Cuidados Críticos; Protocolos Clínicos; Prevención de Enfermedades; Enfermería de Cuidados Críticos.

INTRODUCTION

Delirium is an acute, multifactorial neuropsychiatric syndrome that currently represents one of the most frequent complications in patients during their hospital stay in intensive care units (ICUs).(1) It is considered a public health problem because acute loss of brain function can cause permanent damage. Furthermore, its prevalence and incidence reach up to 80 %, being higher in people on mechanical ventilation (60-80 %) compared to those who do not require it 50 $\% . ^{\scriptscriptstyle (2,3)}$

This syndrome not only increases the mortality rate, but also increases the burden on healthcare personnel and healthcare costs by up to 40 %.(2,4) Recent studies conducted in the United States revealed that 77,6 % of patients presented this complication, and those with a positive diagnosis experienced a significantly longer average hospital stay. (5,6,7,8)

At the national level, a study on delirium in the ICU was conducted, determining that, although the prevalence of delirium in critically ill patients is not completely clear, its presence constitutes a highly relevant independent prognostic factor, associated with prolonged ventilatory support and cognitive impairment after discharge. (6,9,10) However, in Ecuador, research on delirium in critically ill patients in ICUs is still limited. This lack of local evidence hinders the implementation of standardized protocols contextualized to the reality of the healthcare system, underscoring the urgent need to promote research to improve the quality of intensive

care and health outcomes for our patients. (11,12,13,14)

The pathophysiological mechanisms that trigger delirium are not fully understood; however, current evidence points to a multifactorial etiology resulting from multiple interactions. (5,15,16) Predisposing factors such as older age, history of dementia, diabetes, atrial fibrillation, chronic kidney disease, high blood pressure, and elevated biomarkers have been identified. (7,17) There are also susceptible precipitating factors such as drug treatment, pain, dehydration, stress, sleep-wake cycle disruption, physical immobilization, and environmental factors. (1,2,8,18)

Delirium can occur when the patient suffers from sensory, psychological, or environmental discomfort. In this regard, Kolcaba's comfort theory offers a theoretical framework for managing patients' needs in different physical, psychospiritual, sociocultural, and environmental settings. It identifies three types of comfort: first, relief is the elimination of a specific need; second, tranquility is a state of calm and security; and third, transcendence is the ability to cope with adverse situations. (9,19)

Among its clinical manifestations as a global mental disorder with fluctuations in consciousness, patients also experience spatial-temporal disorientation and disturbances in the sleep-wake cycle, accompanied by affective and perceptual changes ranging from anxiety or depression to episodes of euphoria and hallucinations, with a pattern of frequent intensification during the night. It is classified into three subtypes: hyperactive, hypoactive, and mixed, with the hyperactive subtype being the most easily recognizable. The hypoactive subtype manifests itself with daytime sleepiness, apathy, and inappropriate responses. (10,20)

There are different tools for diagnosis, such as the Comfort Questionnaire (CQ-ICU) developed by Kolcaba, an instrument for measuring comfort needs in various dimensions, which allows a quantitative basis to be established, thus enabling the development of a comfort-centered care plan as a preventive tool for delirium to identify factors of physical discomfort such as pain, heat, or cold, and emotional discomfort such as fear and anxiety. (11,21)

Likewise, tools have been designed to detect alterations in the state of consciousness and the level of confusion presented by a patient, such as the Confusion Assessment Method in the Intensive Care Unit (CAM-ICU). (12,22,23,24) This scale was designed for use in busy ICUs with the aim of facilitating and optimizing both clinical resources and the healthcare personnel caring for critically ill patients. It can even be used on intubated patients or those who are unable to speak. Among its advantages are its speed and ease of implementation, as it can be used by any member of the healthcare team, even those without extensive expertise. (13,25,26,27)

Furthermore, although there are validated scales, such as CAM-ICU or ICDSC, if used incorrectly they can lead to late or erroneous diagnoses, limiting the possibility of timely interventions. (14,28,29,30) However, there is no standardized protocol or manual as such, so suboptimal detection of delirium is recurrent, creating a gap in clinical care that directly affects the patient's prognosis. Recognizing evidence-based preventive protocols improves early identification and facilitates early interventions. $^{(15,31,32,33,34)}$

The Nursing Delirium Screening Scale (Nu-DESC) is a clinical instrument designed to identify suspected delirium by assessing five fundamental dimensions, which are rigorously aligned with the classification manual in terms of diagnostic criteria for mental disorders, thus providing a systematic and standardized tool for the early detection of this syndrome. (16,35,36,37,38)

In this context, the prevention of delirium emerges as an essential need during the management of critically ill patients to improve their life expectancy and reduce long-term neurological sequelae, from validated non-pharmacological interventions implemented in a structured manner through evidence-based nursing protocols. (10,39,40)

Therefore, the present systematic review aims to identify and analyze evidence-based protocols for the prevention of delirium in critically ill patients in intensive care units, with the purpose of synthesizing the most effective strategies and strengthening evidence-based critical care.

METHOD

This systematic review was conducted following a rigorous and transparent methodological approach, in accordance with the PRISMA 2020 Statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). This guiding framework ensures the reproducibility and scientific quality of the process, allowing the identification, evaluation, and synthesis of existing evidence on protocols for the prevention of delirium in critically ill patients in intensive care units (ICUs). (17)

Eligibility criteria

The selection of studies was defined according to the PICOS scheme, with the following components:

- Population (P): adult patients admitted to intensive care units, with or without mechanical ventilation.
- Intervention (I): protocols, strategies, or pharmacological and non-pharmacological interventions for the prevention of delirium.

- Comparator (C): standard care, absence of intervention, or application of alternative protocols.
- Outcomes (O): incidence of delirium, absolute risk reduction (ARR), odds ratio (OR), length of hospital stay, mortality, and cognitive sequelae.
- Study designs (S): randomized controlled clinical trials, quasi-experimental studies, previous systematic reviews, and meta-analyses.

Inclusion criteria

- Original studies published between January 2020 and June 2025.
- Publications in English or Spanish with access to full text.
- Research conducted in critical care hospital settings.
- Peer-reviewed studies with clearly described methodology.

Exclusion criteria

- Studies involving pediatric, psychiatric, or outpatient populations.
- Duplicate, incomplete articles, or articles without full text available.
- Publications without peer review or verifiable methodological analysis.

Sources of information and search strategy

The systematic search was conducted between June and July 2025 in ten international scientific databases: PubMed, Scopus, Web of Science, ScienceDirect, ClinicalKey, Redalyc, Dialnet, SpringerLink, Cochrane Library, and EBSCOhost.

Search strategy

Controlled descriptors (MeSH and DeCS) and free terms were used in combination with Boolean operators AND and OR, with the following equations: Delirium AND Critical Care; Delirium AND Clinical Protocols; Delirium AND Disease Prevention; Critical Care AND Clinical Protocols; and Delirium AND Critical Care Nursing. An example of the strategy applied in PubMed was: ("Delirium"[MeSH]) AND ("Critical Care"[MeSH] OR "Intensive Care Units") AND ("Clinical Protocols" OR "Disease Prevention" OR "Critical Care Nursing"). (18,41)

No geographical limits were applied. Articles published between January 2020 and June 2025, in English and Spanish, with access to full text, were included.

Study selection process

The process followed the stages of the PRISMA flowchart (identification, screening, eligibility, and inclusion). Of a total of 538 912 records identified, 52 547 duplicates were removed, and 484 657 were discarded after reading the title and abstract. Finally, 53 articles met the inclusion criteria and were analyzed in full text.

The selection was performed independently by two reviewers, and disagreements were resolved by consensus with a third evaluator. The selection process followed the four phases of the PRISMA flowchart: identification, screening, eligibility, and inclusion. (19,42)

- Identification: 538 912 initial records were located.
- \bullet Screening: After removing duplicates (n = 52 547), titles and abstracts were evaluated, and irrelevant ones were excluded.
 - Eligibility: 310 articles were reviewed in full text.
 - Inclusion: 53 studies met the final eligibility criteria.

The selection was performed independently by two reviewers, and disagreements were resolved by consensus with a third evaluator.

Data extraction process and data elements

Data extraction was performed using a standardized form in Microsoft Excel 2016, previously validated by the review team.

Two independent reviewers collected the following elements from each study: Author, year, and country. Study design and type of intervention. Population and sample size. Outcome variables (incidence, OR, ARR, 95 % CI). Diagnostic instruments and scales used (Nu-DESC, CAM-ICU, ICDSC).

Disagreements were resolved by consensus or with the participation of a third reviewer.

A narrative and descriptive synthesis of the findings was performed, organized according to the type of intervention (pharmacological and non-pharmacological). The effect measures reported by the authors were compared, including odds ratio (OR), 95 % confidence intervals (95 % CI), and absolute risk reduction (ARR).

No meta-analysis was performed due to the heterogeneity of the designs and results of the included studies. For the critical appraisal of methodological quality, different validated tools were applied according to the

design of the included studies.

Randomized clinical trials were analyzed using the RoB 2 tool from the Cochrane Collaboration; quasiexperimental studies with ROBINS-1; (22) and observational studies (cohort or cross-sectional) using the Newcastle-Ottawa Scale (NOS) and STROBE guidelines⁽²³⁾ as a complementary framework.^(24,43,44)

Diagnostic studies were assessed using the QUADAS-2 tool, (25,45) while psychometric studies were analyzed according to COSMIN criteria. (26,46,47)

Each article was evaluated by two independent reviewers, and discrepancies were resolved by consensus or with the intervention of a third reviewer.

Since the research was based exclusively on secondary sources and scientific publications, it did not require approval by an ethics committee. The principles of academic integrity and copyright were respected in accordance with international standards for scientific publication. (27,48)

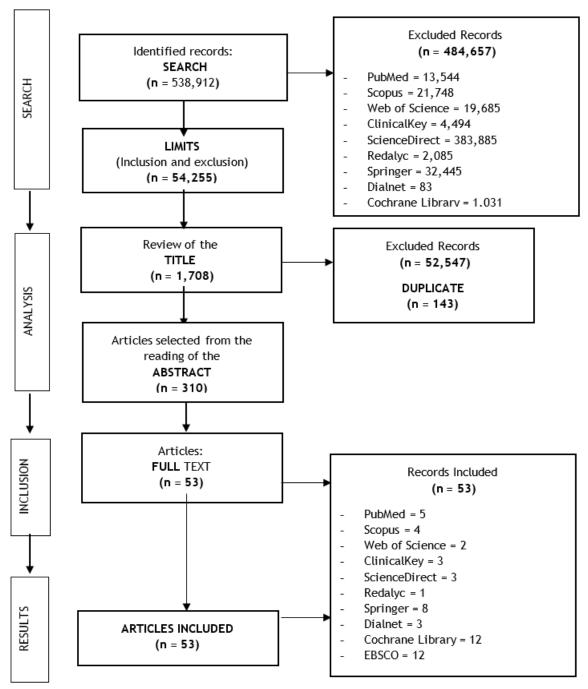


Figure 1. PRISMA diagram

RESULTS

The integrated analysis of the 53 clinical studies allowed for a comparison of different protocols and preventive interventions for delirium in critically ill patients.

6	Detroyer E	Psychometric	Descriptive	To analyze the	152 critically ill	The ICDSC showed a
0	et al. (33)	properties of the		psychometric properties of the	patients participated. Interobserver reliability and convergent validity were assessed by comparing the ICDSC results with the	sensitivity of 86,5 % and a specificity of 92,5 %. The kappa coefficient was 0,89, indicating high
7	Singer P et al.	and partially	clinical	n u t r i t i o n recommendations in the ICU, including the role of omega-3	controlled studies published between 2018 and 2023; synthesis according to PRISMA. Evidence quality was assessed	reduction in delirium (OR 0,52; 95 % CI 0,35-0,76) and a shorter
8	Söylemez GK et al.		experimental	effectiveness of a comprehensive protocol for the prevention and management of postoperative	A total of 120 patients who had undergone cardiac surgery were included, divided into a control group and an intervention group that received multicomponent measures (baseline orientation, early mobilization, and sleep control).	delirium was $12,5\%$ in the intervention group vs. 28% in the control group (p = 0,019). The mean duration of delirium and ICU stay
9	Bulic D et al.	Cognitive and psychosocial outcomes of mechanically ventilated intensive care patients with and without delirium	Prospective cohort study	cognitive and psychosocial sequelae in patients with	followed for 6 months after discharge from the ICU. Neurocognitive tests and quality of life questionnaires were	increased risk of persistent cognitive impairment (OR 3,1; 95 % CI 2,5-3,9) and
10	Frade-Mera MJ et al. ⁽⁴⁹⁾	•	Multicenter observational study	the impact of ABCDE bundle implementation on the clinical	Cohort of 2540 patients in 30 ICUs in Spain; comparison between units with and without full implementation of the bundle.	reduced the incidence of delirium (31,8 % vs. 28,7 %; ARR 6,6
11	van Gelder TG et al. ⁽⁴¹⁾	The risk of delirium after sedation with propofol or midazolam in intensive care unit patients	Retrospective cohort study	the use of propofol versus midazolam in critically ill	clinical records of adult patients on mechanical ventilation were analyzed. The presence of delirium was assessed using the CAM-ICU scale,	lower incidence. Light sedation with propofol is recommended in

12	L o b o - Valbuena B et al. ⁽³⁴⁾			risk factors associated with the development	diagnosis of delirium were included. The CAM-ICU scale was applied every 8 hours during the stay. Demographic, clinical, and pharmacological	associated with delirium were the use of intravenous benzodiazepines (OR 2,38), mechanical ventilation (OR 2,36),
13		Sleep in the intensive and intermediate care units: Exploring related factors of delirium, benzodiazepine use, and mortality		relationship between sleep, benzodiazepine use, and the incidence of	Multicenter study in 12 European hospitals. Sleep questionnaires, nighttime monitoring, and delirium diagnosis with CAM-ICU were applied.	significantly associated with delirium (OR 1,80; 95 % CI 1,40- 2,10). Benzodiazepine
14	Zhou L et al.	Preventive effects of early mobilization on delirium incidence in critically ill patients: Systematic review and meta-analysis	Systematic review and meta-analysis	the preventive effect of early	Systematic review of 16 clinical trials (n = 2845). OR and 95 % CI were calculated using a random effects model.	reduced the risk of delirium by 35 % (OR 0,65; 95 % CI 0,48-
15	Jeong IS et al. (16)		Analytical observational study	the clinical and environmental factors that	design was applied to 250 critically ill adult patients. Physiological, pharmacological, and environmental variables were evaluated using CAM-	factors were: prolonged immobility (OR 1,70), sensory deficit (OR 1,65), and deep sedation (OR 1,85). The study highlights
16	Minami T et al. (7)	Dexmedetomidine versus haloperidol for sedation of non-intubated patients with hyperactive delirium during the night in a high dependency unit (DEX-HD trial)		the efficacy and safety of dexmedetomidine versus haloperidol in controlling nocturnal hyperactive	assigned to two groups (dexmedetomidine vs. haloperidol). The time to resolution of delirium, adverse events, and the need for intubation were	significantly reduced the mean time to resolution of delirium (8,5 h vs. 18,3 h; p < 0,01) and the rate of adverse cardiovascular events.
17	Mahrouqi BAL et al. ⁽⁵⁾		observational	prevalence and clinical outcomes associated with	of mechanical ventilation, and	The prevalence of delirium was 46,1 %. Patients with delirium had higher mortality

18	Fuentes AL et al. ⁽³⁾		adaptation and	and culturally validate the ICU Delirium Playbook into Spanish for	Direct and reverse translation process, validation by a panel of experts, and pilot testing with 60 nursing professionals.	obtained a content validity index of 0,92 and internal
19	Fernandes F et al. (2)	N u r s i n g Intervention to Prevent and Manage Delirium in Critically Ill Patients: A Scoping Review	Scoping review	the evidence on effective nursing interventions to prevent and manage delirium	of 65 international articles. The PRISMA-SCR guideline was applied, and interventions were classified as	were cognitive reorientation, early mobilization, and sleep
20	Sinu J et al. ⁽¹⁾		experimental pretest-posttest	impact of a virtual e d u c a t i o n a l module on the knowledge and competence of	participated, divided into an experimental group (online training) and a control group. A validated q u e s t i o n n a i r e	group significantly improved their level of knowledge (mean 18,4 vs. 12,2; p < 0,001) and perception of clinical competence. Virtual education
21	Vicente- Flores GE ⁽⁶⁾	Delirium in patients in the intensive care unit			Hospital of Santo Domingo, Ecuador, were included. The CAM-ICU scale was applied for diagnosis and a structured	delirium was 38 %. The main associated factors were advanced age, use of benzodiazepines, and mechanical
22	Lin Y et al. (9)		Systematic review protocol	evidence map on interventions based on Kolcaba's Comfort Theory applied	designed using mixed methodology, based on international reviews. Physical, psychospiritual, sociocultural, and environmental	identified on the effect of comfort interventions in reducing stress and delirium, although gaps
23		The comfort perception in the critically ill patient from the Kolcaba theoretical model		the perception of comfort in critically ill patients using	The Comfort Questionnaire (CQ-ICU) was administered to 85 adult patients in the ICU. Physical, psychospiritual, sociocultural, and environmental	comfort were related to anxiety, sleep deprivation, and limited mobility. It is concluded that comfort is a

29	Perelló P et al.	Analysis of adherence to an early mobilization protocol in the ICU over a three-year period using the clinical information system		barriers to the	ill patients with continuous recording in a computer system;	was moderate, improving when adjusted for ineligible days. Main barriers: clinical instability and resources. Early mobilization
30	Contreras CCT et al.	Multicomponent nursing program to prevent delirium in critically ill patients: a randomized clinical trial		To assess the effectiveness of a multicomponent nursing program to prevent delirium in the ICU.		significantly reduced the incidence of delirium compared to the control, with clinical relevance and safety. The findings support its protocolized implementation in the
31	Nie Y et al.			relationship between the quality of nurse-patient	60 ICU nurses were included. Structured questionnaires and the CAM-ICU scale were used to assess delirium. Pearson's	between effective n u r s e - p a t i e n t communication and
32	Tan SM et al.	Family engagement and delirium prevention in intensive care units: A multicenter cohort study	Prospective multicenter cohort study	the impact of structured family e n g a g e m e n t on delirium prevention in	from 12 ICUs were included. Families in the intervention group participated in reorientation and sensory stimulation	family involvement (19,4 %) compared to the group without
33	Boehm LM et al.	Perceptions of nurses on barriers and facilitators to early mobility in intensive care units	qualitative	barriers and facilitators to	Twenty-five semi- structured interviews were conducted with nursing staff. Thematic analysis was performed following the COREQ guidelines.	of hemodynamic instability and lack of staff. Facilitators
34	Meghani SH et al.		cross-sectional	k n o w l e d g e , a t t i t u d e s , and practices regarding delirium	on the NICE guideline.	Sixty-eight percent of nurses were aware of non-pharmacological interventions, but less than 40 % applied them systematically. Continuing education and institutional support are required.

41	Alaterre C et al.	Accuracy of CAM- ICU and ICDSC for delirium detection in post-surgical ICU patients		sensitivity and specificity of CAM-ICU and ICDSC in detecting	patients were evaluated over 5 days. A psychiatrist's reference diagnosis was used as the gold standard.	86 %, specificity 92 %. CAM-ICU is better for early detection; ICDSC is better for ruling out
42	van den Boogaard et al.		comparative	discrepancies b e t w e e n routine clinical assessment and structured scales	assessments were compared with CAM- ICU and Nu-DESC results applied by	CAM-ICU was low (κ = 0,41). Nu-DESC showed better concordance (κ = 0,68). Clinical
43	Rood PJ et al.	Effects of a delirium-prevention bundle on mechanically v e n t i l a t e d ICU patients: A randomized controlled trial	Randomized clinical trial	efficacy of a multicomponent d e l i r i u m prevention bundle	randomly assigned to intervention (bundle: sleep hygiene, reorientation,	% vs. 37 %; p = 0,014). Decreased days of mechanical ventilation and ICU
44	Toledo et al.	Delirium prevention protocol in cardiac surgery patients: Study protocol for a randomized controlled trial		methodological design of a future trial to evaluate a delirium	Includes 3 arms: pharmacological intervention, non-pharmacological	(protocol). The c o m p a r a t i v e effectiveness of pharmacological and non-pharmacological i n t e r v e n t i o n s for preventing
45	Zhang et al.	Effect of mindfulness-based interventions on delirium risk in critically ill patients: Study protocol for a pilot randomized trial	Pilot clinical trial protocol	pilot trial of mindfulness-based interventions	patients in the ICU. Intervention of 10 minutes of guided	(protocol). Feasibility, adherence, and preliminary reduction in delirium are
46	Khan et al.		observational	relationship between sedation practices and the incidence of delirium in	Data were collected from 12 ICUs (n = 520 patients). The type of sedative, depth (RASS), and delirium were recorded using the CAM-ICU. Adjusted regression models.	associated with an increased risk of delirium (OR 2,45). The use of propofol reduced the risk compared
47	Wong et al.	Impact of sleep quality on delirium development in mechanically ventilated patients		impact of sleep quality on the onset of delirium	simplified nocturnal polysomnographic monitoring; delirium assessed with CAM- ICU. Sleep parameters	delirium (OR 1,92). Nighttime noise >60

Note: AUC: Area Under the Curve (ROC curve). ARR: Absolute Risk Reduction. CAM-ICU: Confusion Assessment Method for the Intensive Care Unit. CQ-ICU: Comfort Questionnaire - Intensive Care Unit. COVID-19: Coronavirus Disease 2019. DyDel: Dynamic Delirium Nursing Intervention. RR: Respiratory Rate. GRADE: Grading of Recommendations Assessment, Development and Evaluation. 95 % CI: 95 % Confidence Interval. ICDSC: Intensive Care Delirium Screening Checklist. Nu-DESC: Nursing Delirium Screening Scale. NOS: Newcastle-Ottawa Scale (for non-randomized studies). OR: Odds Ratio. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses. PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Scoping Review Extension. RASS: Richmond Agitation-Sedation Scale. RoB 2: Risk of Bias Tool version 2 (Risk of bias tool for randomized trials). ICU: Intensive Care Unit. MV: Mechanical Ventilation.

critically

patients.

ill using CAM-ICU.

prospective

observational study

Patients

wake

oscillation

recommended.

melatonin-cortisol

twice the incidence. Interventions targeting the sleepcycle

without

had

are

Protocols and Effectiveness of Omega-3 Fatty Acids

The most effective protocol was prophylaxis with omega-3 fatty acids in mechanically ventilated patients, with an absolute risk reduction (ARR) of 20 %. Prophylaxis with minocycline showed an ARR of 15 %, while the DyDel (Dynamic Delirium Nursing Intervention) protocol reduced the incidence by 9,2 %. The ABCDEF bundle, widely used in intensive care, showed a reduction of 6,6%. In contrast, total restriction of family visits increased the incidence of delirium by 5 %, reflecting a negative effect on clinical outcome. (28)

These findings highlight the effectiveness of combined protocols and the importance of family support and humanization of care as protective factors. (28)

Table 2. Effective protocols for the prevention of delirium						
Protocol	Incidence Control (%)	Incidence Intervention (%)	Mean ARR (pp)			
Prophylaxis protocol with omega-3 fatty acids in critically ill mechanically ventilated patients	40	20	20			
Prophylaxis with minocycline for the prevention of delirium in critically ill patients	35	20	15			
DyDel	14,80	5,6	9,20 %			
ABCDEF Bundle	31,86	28,74 %	6,57 %			
Policy of total ban on visits to the ICU	59	64	5			
Note: ARR (Absolute Risk Reduction). DyDel (Dynamic Delirium Nursing Intervention), ABCDEF Bundle: Set of integrated interventions for the management of critically ill patients						

Likewise, prophylaxis with minocycline, an antibiotic with neuroprotective effects, achieved a 15% reduction. This pharmacological strategy suggests additional benefits beyond conventional antimicrobial therapy, probably due to its anti-inflammatory action on the central nervous system. (29)

Protocols and risk factors for delirium

The DyDel protocol, which achieved a 9,2 % reduction in incidence, demonstrates that structured interventions focused on the assessment and detection of delirium are also highly effective in selected clinical settings. Similarly, the ABCDEF bundle, a multimodal approach widely promoted in intensive care, showed a more modest reduction of 6,57 % in the prevention of delirium.

On the other hand, the only intervention associated with a negative effect was restricting visits, as this increased the incidence of the disorder, which is reflected in a negative ARR. This finding underscores the importance of family support and the humanization of care as protective factors against delirium. (31)

Table 3. Modifiable vs. non-modifiable risk factors for delirium					
Туре	Risk factor	OR (95 % CI)			
Non-modifiable	Age ≥ 65 years	2,25 (2,10-2,40)			
	Comorbidities (dementia, CVD)	2,20 (1,80-2,60)			
	Male	1,30 (1,10-1,60)			
Modifiable	IV benzodiazepine use	2,38 (1,65-3,10)			
	Invasive mechanical ventilation	2,36 (1,92-2,80)			
	Prolonged sedation	1,85 (1,50-2,20)			
	Sensory deficit	1,65 (1,30-2,00)			
	Sleep deprivation	1,80 (1,40-2,10)			
	Prolonged immobility	1,70 (1,35-2,00)			
	Metabolic disorders	1,90 (1,50-2,30)			
Note: OR (Odds Ratio), 95 % CI (95 % Confidence Interval), CVD (Cerebrovascular Disease), IV (Intravenous).					

Analysis of the risk factors associated with delirium in critically ill patients revealed a combination of modifiable and non-modifiable factors, with varying levels of impact according to odds ratio (OR) values. Among the non-modifiable factors, age ≥ 65 years showed a significant association with the development of delirium (OR: 2,25), indicating that older adults are more than twice as likely to suffer from this condition.

Regarding modifiable factors, those with the greatest impact were the use of intravenous benzodiazepines (OR: 2,38) and invasive mechanical ventilation (OR: 2,36), both associated with more than double the risk of developing delirium. Taken together, the modifiable factors underscore the importance of implementing nursing strategies aimed at early diagnosis and modifying preventable factors, especially in older patients with neurological comorbidities, in order to reduce the incidence rates of delirium in critical care units.

Intervention	Studies (n)	OR (95 % CI)
Early mobilization	6	0,50 (0,38-0,65)
Cognitive reorientation	4	0,55 (0,42-0,73)
Sleep management	5	0,60 (0,45-0,80)
Sensory stimulation (hearing aids/glasses)	3	0,62 (0,40-0,95)
Structured family visits	3	0,70 (0,50-0,98)
Staff education	2	0,68 (0,51-0,90)
Reduce and optimize the use of sedation	6	0,48 (0,36-0,63)

OR (Odds Ratio), 95 % CI (95 % Confidence Interval).

Non-pharmacological interventions are numerous and varied, based on the results of 29 clinical studies, considering odds ratios (OR) that reach a 95 % confidence level (95 % CI). All interventions analyzed showed a significant reduction in the probability of developing delirium when compared to the control group.

The most effective intervention was reducing and optimizing the use of sedation (OR: 0,48), indicating a reduction of more than 50 % in the probability of delirium. This was followed by early mobilization (OR: 0,50), with consistent results in six studies, confirming its high impact on the prevention of delirium.

Cognitive reorientation, applied in four studies, also showed a notable reduction in risk (OR: 0,55), as did sleep management (OR: 0,60).

Overall, the findings show that low-cost interventions focused on humanized care and cognitive stimulation have a clear and measurable preventive effect against delirium, particularly when combined with interventions to reduce and optimize the use of sedation.

Table 5. Diagnostic accuracy of delirium detection scales						
Scale Sensitivity Median % (IQR) Specificity Median % (IQR)						
Nu-DESC	91,6	95,6				
CAM-ICU	89,25	85,925				
ICDSC	86,5	92,5				

Note: Nu-DESC (Nursing Delirium Screening Scale), CAM-ICU (Confusion Assessment Method for the Intensive Care Unit), ICDSC (Intensive Care Delirium Screening Checklist), IQR (Interquartile Range): Interquartile range.

Three widely used clinical scales were evaluated to improve the diagnosis of delirium in critically ill patients in the ICU: Nu-DESC, CAM-ICU, and ICDSC, using indicators such as sensitivity and specificity to determine the most effective scale for detecting delirium.

The Nu-DESC scale showed the greatest impact on effectiveness, with a median sensitivity of 91,6 % and a specificity of 95,6 %, indicating an excellent ability to detect delirium, both the presence and absence of delirium. These values position it as a reference tool for settings such as intensive care units. (32)

The CAM-ICU scale showed a median sensitivity of 89,25 % and specificity of 85,93 %, confirming its usefulness as a robust diagnostic tool. Although its specificity is lower than that of Nu-DESC, its high sensitivity makes it an effective option for early detection, especially considering its widespread clinical use and international validation.(29)

For its part, the ICDSC had the lowest sensitivity (86,5%), but an intermediate specificity (92,5%), suggesting a greater ability to rule out false positives. This combination of diagnostic parameters could be useful in contexts where avoiding overdiagnosis of delirium is a priority. (33)

Delirium in hospitalized patients is significantly associated with a wide range of clinical, functional, and cognitive complications, with high levels of prevalence and risk.

The most prevalent complication associated with delirium is persistent cognitive impairment, with an OR of 3,10, indicating that patients with delirium are more than three times as likely to have lasting cognitive deficits compared to those without delirium, followed by prolonged mechanical ventilation, with an OR of 2,90. Delirium can cause agitation, altered consciousness, and neurological impairment.

Table 6. Clinical complications of delirium in the intensive care unit						
Complication	Total prevalence (%)	OR (95 % CI)				
Increased hospital stay	42-60	2,54 (2,10-3,07)				
Prolonged mechanical ventilation	30-45	2,90 (2,20-3,60)				
Hospital mortality	20-30	2,20 (1,70-2,85)				
Hospital readmission	18-24	1,80 (1,40-2,30)				
Persistent cognitive impairment	Up to 40 %	3,10 (2,50-3,90)				
Functional dependence	45-55	2,85 (2,10-3,50)				
Prolonged use of sedative drugs	>60 %	2,40 (1,90-3,10)				

Functional dependence also stands out, with an OR of 2,85. Hospital stay is another important consequence, with an OR of 2,54, and prolonged use of sedative drugs has an OR of 2,40, which may be related to the management of agitation and sleep disturbance characteristic of delirium.

DISCUSSION

This systematic review synthesizes the available evidence on pharmacological and non-pharmacological interventions for the prevention of delirium in critically ill patients admitted to intensive care units (ICUs). The results consistently show that multimodal strategies, early mobilization, sleep optimization, family involvement, and nursing interventions based on cognitive reorientation are the most effective measures for reducing the incidence, duration, and severity of delirium. Similarly, some drugs such as omega-3 fatty acids and minocycline show potentially protective effects, although their use remains complementary to nonpharmacological approaches.

The findings of this systematic review show that delirium continues to be one of the most prevalent complications in intensive care units (ICUs), with a reported incidence ranging from 30 % to 60 %, depending on patient characteristics, severity, and sedation practices. (34) In particular, deep sedation with benzodiazepines, prolonged mechanical ventilation, and sleep deprivation were consistently identified as significant risk factors for the development of delirium. (35)

With regard to non-pharmacological interventions, the included studies consistently demonstrate that multicomponent protocols such as the ABCDE/ABCDEF bundle significantly reduce the incidence and duration of delirium, with reductions ranging from 15 % to 40 % depending on the unit and degree of implementation. (36,37) Notably, early mobilization showed a risk reduction of between 35 % and 42 %, confirmed by systematic reviews and meta-analyses. These interventions not only reduce the incidence of the syndrome, but also improve functionality and reduce the number of days of mechanical ventilation.

Pharmacological interventions show promising effects, although the evidence is more limited. The use of omega-3 fatty acids reduced the incidence of delirium in ventilated patients, (38) while prophylactic minocycline also had a protective effect. (39) Dexmedetomidine was also shown to be more effective and safer than haloperidol in patients with nocturnal hyperactive delirium. (40) Furthermore, comparative studies suggest that propofol is associated with a lower incidence of delirium compared to midazolam, reinforcing the importance of light sedation strategies. (41)

In terms of diagnosis, the CAM-ICU, Nu-DESC, and ICDSC scales demonstrated high sensitivity, specificity, and interobserver consistency, supporting their systematic use in clinical practice for the early detection of

Finally, the consequences of delirium extend beyond the hospital stay. Longitudinal evidence indicates that patients who develop delirium have a significantly higher risk of persistent cognitive impairment, functional limitation, and decreased quality of life up to one year after ICU discharge. These results underscore the urgent need to strengthen preventive strategies and adopt evidence-based protocols. (41,44)

The results of this systematic review confirm that delirium is a multifactorial syndrome whose onset is closely related to the severity of the critically ill patient, sedation practices, and the quality of the clinical environment. This behavior not only coincides with the studies included in this review, but also aligns with the seminal findings described by a study, who demonstrated that delirium is an independent predictor of mortality, prolonged hospital stay, and long-term cognitive impairment. The current results reaffirm this early evidence, showing that patients with delirium have greater functional and cognitive impairment even months after discharge, as evidenced by contemporary studies. (45)

Likewise, the findings on preventive interventions and triggering factors coincide with the clinical

recommendations established by a study in their PADIS guidelines, which highlight that deep sedation, the use of benzodiazepines, and prolonged immobility are the main modifiable factors that predispose patients to delirium. The studies included in this review, such as those by Lin et al. (46), Lobo-Valbuena et al. (34), and Van Der Hoeven et al. (47), support this assertion by showing that the depth of sedation and prolonged mechanical ventilation are key determinants.

In line with the international literature, this review shows that multicomponent non-pharmacological interventions are the most effective. Both ABCDE/ABCDEF protocols and early mobilization demonstrated significant reductions in the incidence and duration of delirium, which is consistent with the results obtained by Rangappa et al. (48) and Frade-Mera et al. (49). Similarly, the meta-analysis by a study confirms that early mobilization not only prevents delirium but also improves muscle strength and functional outcomes in critically ill patients.

With regard to pharmacological interventions, the results should be interpreted with caution. Evidence on omega-3 and minocycline shows a potential protective effect, (38) while dexmedetomidine appears to be superior to haloperidol in the management of hyperactive delirium. (40) However, as pointed out by studies, there is still no pharmacological agent capable of consistently preventing delirium, so its use should be considered an adjunct to, rather than a substitute for, non-pharmacological strategies.

The international literature is also consistent regarding the impact of the sensory environment, especially in relation to noise, lighting, and disruption of the sleep-wake cycle. The studies included in this review, such as Espinoza et al. (50) and Van Der et al. (35), reinforce this evidence, demonstrating that circadian rhythm disruption significantly increases the risk of delirium. These findings coincide with recent research in 2025 by Delaney et al. (51) on chronobiology in the ICU, which points to the importance of a regulated environment for preserving cognitive function.

The longitudinal studies included argue that delirium is not an isolated event, but a syndrome with a prolonged impact on functionality, cognition, and quality of life. These results reproduce and update what has already been demonstrated: that delirium is a robust predictor of persistent cognitive impairment. In this sense, the findings of the present study are aligned with both classical and contemporary evidence, underscoring the need to strengthen prevention programs and continuous monitoring in the ICU.

From a clinical perspective, the results indicate that the most effective and consistent intervention is the use of multicomponent non-pharmacological strategies, such as ABCDE/ABCDEF bundles, early mobilization, cognitive reorientation, and sensory environment enhancement. The systematic implementation of these care packages has been shown to reduce delirium and improve overall outcomes for critically ill patients. This suggests that healthcare institutions should adopt models of care focused on active prevention, with clear protocols and trained staff to ensure daily adherence. (49)

In the field of nursing practice, the findings reinforce the essential role that nurses play in early detection and the application of preventive interventions. The proven effectiveness of the systematic use of scales such as CAM-ICU, Nu-DESC, and ICDSC, according to Detroyer in 2020 and Henao-Castaño in 2023, shows that nursing is the discipline best positioned to identify early signs of cognitive impairment. Likewise, early mobilization and reorientation, two of the interventions with the strongest evidence of effectiveness, depend largely on the ability of nursing staff to perform them safely and continuously. Therefore, these results highlight the importance of strengthening the team's skills through ongoing education and training programs. (42,43)

From an organizational perspective, Delaney et al. (51) and Espinoza et al. (50) suggest that the findings indicate that delirium prevention cannot be considered solely as a task for clinical staff, but rather as an institutional policy. Evidence on the impact of the physical environment, such as noise levels, lighting, and interruptions during care, indicates that ICUs should be redesigned based on principles of humanization and protection of the circadian rhythm. This involves reviewing architectural factors, workflows, and family visitation policies.

In terms of scientific implications, the results show that, although there have been significant advances in the non-pharmacological approach, the evidence on pharmacological interventions remains limited and heterogeneous. Recent studies on omega-3(38) minocycline(39) and dexmedetomidine(40) show promising but inconclusive results, indicating that clinical trials with more robust samples are needed to determine their actual effectiveness. In addition (52), evidence on long-term consequences, such as persistent cognitive impairment, underscores the need to develop lines of research focused on post-ICU follow-up and cognitive neurorehabilitation.

Despite the breadth and methodological rigor employed in this systematic review, it is important to recognize several limitations that influence the interpretation of the results and that should be considered when generalizing the findings. First, the included studies show marked methodological heterogeneity in terms of design, population, follow-up duration, delirium assessment instruments, and interventions implemented. This variability makes direct comparison between studies difficult and limits the possibility of conducting more robust meta-analyses, as has also been noted in previous reviews on the subject. (53)

Another important limitation is the diversity of diagnostic instruments used. Although tools such as CAM-ICU,

ICDSC, and Nu-DESC have solid evidence of validity and reliability, (42,43) their application was not uniform across all studies, which may have led to differences in sensitivity for detecting hypoactive delirium or short-duration episodes. This highlights the need to standardize detection protocols, as recommended by the PADIS guidelines.

Likewise, it was found that several studies had small samples or were conducted at a single institution, which limits the extrapolation of results. This coincides with what has already been pointed out by those who emphasize that research on delirium requires large samples and diverse populations to capture the complexity of the syndrome. Although some of the studies included were multicenter and large in size, most specific interventions, such as pharmacological interventions with omega-3, minocycline, or dexmedetomidine, were evaluated only in small trials with limited replication.

The analysis also reveals the possibility of publication bias, given that most studies are published in English and come from high-income countries. This implies that relevant interventions implemented in Latin American, African, or Asian regions may be underrepresented. This bias is recognized as a recurring limitation in systematic reviews in the area of critical care. (38)

Another limitation is that, although this review identifies important associations, most observational studies cannot establish causality, which means that risk factors must be interpreted with caution. In addition, the evidence on pharmacological interventions remains insufficient to make definitive recommendations, which is consistent with the observations of international authors on the need for more controlled clinical trials with greater statistical power. (40)

CONCLUSIONS

The prevention of delirium in critically ill patients is a priority in intensive care, given its direct impact on morbidity and mortality, post-discharge functionality, and hospital costs.

The evidence analyzed shows that the implementation of evidence-based protocols, supported by nursing intervention, significantly reduces the incidence of this syndrome and improves clinical outcomes.

The results confirm that the appropriate use of sedation, together with omega-3 fatty acid prophylaxis, are the most effective strategies for reducing the risk of delirium.

Similarly, non-pharmacological interventions—such as early mobilization, cognitive reorientation, sleep management, and structured family involvement—have been shown to be low-cost, safe, and easily applicable practices in the hospital setting.

Among the available instruments, the Nu-DESC scale is positioned as the most sensitive and specific diagnostic tool for the early detection of delirium in critically ill patients, favoring timely intervention and reducing neurological and functional complications.

Finally, the essential role of nursing professionals in monitoring, early detection, and implementation of preventive strategies for delirium is highlighted, reinforcing the need to consolidate institutional protocols and ongoing training in intensive care units in order to strengthen patient safety and the quality of critical care.

ACKNOWLEDGMENTS

The authors express their gratitude to the Universidad Metropolitana, Machala Campus, for the institutional support provided and for funding the project "Nursing and clinical psychology care from the perspective of health promotion and disease prevention in groups living in poverty and their inequalities: The case of El Cambio parish."

Similarly, special recognition is extended to the State University of Milagro (UNEMI) and the Postgraduate Unit for the academic advice and methodological review offered during the development of this study, contributing to the strengthening of the scientific rigor of the work.

Finally, we acknowledge the valuable contribution of all those involved in the execution of the project, whose commitment made it possible to carry out this research process for the benefit of vulnerable populations in Ecuador.

BIBLIOGRAPHIC REFERENCES

- Sinu J, Maneesha C, Manju D. Nurses' Knowledge and Subjective Strain in Delirium Care: Impact of a Webbased Instructional Module on Nurses Competence. Indian J Crit Care Med. 2024;28(2):111-9. DOI: 10.5005/ jp-journals-10071-24626
- 2. Fernandes F, Santos M, Anacleto AM, Jerónimo C, Ferreira Ó, Baixinho CL. Nursing Intervention to Prevent and Manage Delirium in Critically Ill Patients: A Scoping Review. Healthcare. 2024;12(11). DOI: 10.3390/ healthcare12111134
- 3. Fuentes AL, Makhija H, Fine JM, Reyes PA, Leon BD De, Sanchez-Azofra A, et al. Spanish Translation and Cultural Adaptation of the Intensive Care Unit Delirium Playbook. ATS Scholar. 2024;5(2):259-73. DOI: 10.34197/ ats-scholar.2023-0057OC

- 4. Ali MA, Hashmi M, Ahmed W, Raza SA, Khan MF, Salim B. Incidence and risk factors of delirium in surgical intensive care unit. Trauma Surg Acute Care Open. 2021;6(1). DOI: 10.1136/tsaco-2020-000564
- 5. Mahrouqi BAL, Namani HAL, Harmali ZAL, Sulaimi FAL, Shibani AAL.Delirium in Adult Critical Care Unit: Prevalence and Outcomes at Regional Hospital. Am J Health Res. 2024;12(6):237-43. DOI: 10.11648/j. ajhr.20241206.18
- 6. Vicente-Flores GE.Delirio en pacientes en la unidad de cuidados intensivos. Rev Multidiscip Perspect Investig. 2023;3(2):9-13. DOI: https://doi.org/10.5281/zenodo.10049331
- 7. Minami T, Watanabe H, Kato T, Ikeda K, Ueno K, Matsuyama A, et al. Dexmedetomidine versus haloperidol for sedation of non-intubated patients with hyperactive delirium during the night in a high dependency unit: DEX-HD trial. BMC Anesthesiol. 2023;23(193):1-9. DOI: 10.1186/s12871-023-02158-1
- 8. Mohsen S, Moss SJ, Lucini F, Krewulak KD, Stelfox HT, Niven DJ, et al. Impact of Family Presence on Delirium in Critically Ill Patients: A Retrospective Cohort Study. Crit Care Med. 2022;50(11):1628-37. DOI: 10.1097/CCM.000000000005657
- 9. Lin Y, Zhou Y, Chen C. Interventions and practices using Comfort Theory of Kolcaba: Evidence and gap map. Syst Rev. 2023;12(1). DOI: 10.1186/s13643-023-02202-8
- 10. Malik AK, Baidya DK, Anand RK, Subramaniam R. A New ICU Delirium Prevention Bundle: Randomized Trial. Indian J Crit Care Med. 2021;25(7):754-60. 10.5005/jp-journals-10071-23881
- 11. Gonzalez-Baz MD, Cerro EP del, Durango-Limárquez MI, Alcantarilla-Martín A, Romero-Arribas R, Ledesma-Fajardo J, et al. The comfort perception in the critically ill patient from the Kolcaba model. Enferm Intensiva. 2024;35(4):264-77. DOI: 10.1016/j.enfie.2024.03.001
- 12. Fernández M, Faus M. Medidas no farmacológicas para la prevención del delirium en pacientes ingresados en UCI. Therapeía. 2021;(14):113-40.
- 13. Miranda F, Gonzalez F, Plana MN, Zamora J, Quinn TJ, Seron P. Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) for diagnosis of delirium. Cochrane Database Syst Rev. 2023;11. DOI: 10.1002/14651858.CD013126.pub2
- 14. Stollings JL, Kotfis K, Chanques G, Pun BT, Pandharipande PP, Ely EW. Delirium in critical illness: Clinical manifestations and management. Intensive Care Med. 21;47(10):1089-103. DOI: 10.1007/s00134-021-06503-1
- 15. Mart MF, Roberson SW, Salas B, Pandharipande PP, Ely EW. Prevention and Management of Delirium. Semin Respir Crit Care Med. 2021;42(1):112-26. DOI: 10.1055/s-0040-1710572
- 16. Jeong IS, Cho MK. Factors Affecting Delirium in ICU Patients. Int J Environ Res Public Health. 2023;20(10). DOI: 10.3390/ijerph20105889
- 17. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467-73. DOI: 10.7326/M18-0850
 - 18. Cochrane. Manual Cochrane para revisiones sistemáticas de intervenciones. Cochrane Handbook. 2025.
- 19. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 statement. BMJ. 2021;372:n71. DOI: https://doi.org/10.1136/bmj.n71
- 20. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: Tool for assessing risk of bias in randomized trials. BMJ. 2019;366:l4898. DOI: 10.1136/bmj.l4898
- 21. Lake A, Fuller M. Sphingolipids in Gaucher disease: A systematic review. Orphanet J Rare Dis. 2025;20(1):565. DOI: 10.1186/s13023-025-04015-5
- 22. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: Tool for assessing risk of bias in non-randomised studies. BMJ. 2016;355:i4919. DOI: 10.1136/bmj.i4919

21 Zambrano Requelme JF, et al

- 23. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP.STROBE Statement. J Clin Epidemiol. 2008;61(4):344-9. DOI: 10.1016/j.jclinepi.2007.11.008
- 24. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: Appraisal tool for systematic reviews. BMJ. 2017;358:j4008. DOI: https://doi.org/10.1136/bmj.j4008
- 25. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2. Ann Intern Med. 2011;155(8):529-36. DOI: 10.7326/0003-4819-155-8-201110180-00009
- 26. Prinsen CAC, Mokkink LB, Bouter LM, Alonso J, Patrick DL, de Vet HCW, et al. COSMIN guideline. Qual Life Res. 2018;27(5):1147-57. DOI: 10.1007/s11136-018-1798-3
 - 27. WHO. Guidance on ethics and health research priority setting. 2025.
- 28. Naghibi T, Shafigh N, Mazloomzadeh S. Role of omega-3 fatty acids in prevention of delirium. J Res Med Sci. 2020;25(1):10. DOI: 10.4103/jrms.JRMS_567_18
- 29. Dal-Pizzol F, Coelho A, Simon CS, Michels M, Corneo E, Jeremias A, et al. Minocycline for Delirium: Randomized Trial. Chest. 2024;165(5):1129-38. Dal-Pizzol F, Coelho A, Simon CS, Michels M, Corneo E, Jeremias A, et al. Minocycline for Delirium: Randomized Trial. Chest. 2024;165(5):1129-38. DOI: 10.1016/j. iccn.2024.103691
- 30. Gómez Tovar LO, Henao Castaño AM. Dynamic delirium Nursing intervention. Intensive Crit Care Nurs. 2024;83. DOI: 10.1016/j.iccn.2024.103691
- 31. Shinohara F, Unoki T, Horikawa M. No-visitation policy and development of delirium. PLoS One. 2022;17(3):e0265082. DOI: 10.1371/journal.pone.0265082
- 32. Henao-Castaño ÁM, González LL, Tovar LOG. Validation of Nu-DESC. Invest Educ Enferm. 2023;41(2). DOI: 10.17533/udea.iee.v41n2e03
- 33. Detroyer E, Timmermans A, Segers D, Meyfroidt G, Dubois J, Van Assche A, et al. Psychometric properties of ICDSC. BMC Nurs. 2020;19(1):1-10. DOI: 10.1186/s12912-020-00415-z
- 34. Lobo-Valbuena B, Gordo F, Abella A, Garcia-Manzanedo S, Garcia-Arias MM, Torrejón I, et al.Risk factors for delirium in ICU. PLoS One. 2021;16(9). DOI: 10.1371/journal.pone.0255522
- 35. Van der Hoeven AE, Bijlenga D, van der Hoeven E, Schinkelshoek MS, Hiemstra FW, Kervezee L, et al. Sleep in ICU and delirium. Intensive Crit Care Nurs. 2024;81. DOI: 10.1016/j.iccn.2023.103603
- 36. Espinoza Suarez NR, Urtecho M, Nyquist CA, et al. Consequences of suboptimal communication. J Crit Care. 2021;61:247-51. DOI: 10.1016/j.jcrc.2020.10.012
- 37. Fang D, Zeng L, Kuang F. Efficacy and safety of care bundles in the treatment of delirium in ICU patients: A meta-analysis and systematic review. BMC Nurs. 2025;24(1):356. DOI: 10.1186/s12912-025-03013-z
- 38. Naghibi T, Shafigh N, Mazloomzadeh S. Role of omega-3 fatty acids in the prevention of delirium in mechanically ventilated patients. J Res Med Sci. 2020;25(1). DOI: 10.4103/jrms.JRMS_567_18
- 39. Dal-Pizzol F, Coelho A, Simon CS, Michels M, Corneo E, Jeremias A, et al. Prophylactic Minocycline for Delirium in Critically Ill Patients: A Randomized Controlled Trial. Chest. 2024;165(5):1129-38. DOI: 10.1016/j. chest.2023.11.041
- 40. Minami T, Watanabe H, Kato T, Ikeda K, Ueno K, Matsuyama A, et al. Dexmedetomidine versus haloperidol for sedation of non-intubated patients with hyperactive delirium during the night: DEX-HD trial. BMC Anesthesiol. 2023;23(1).
- 41. Van Gelder TG, van Diem-Zaal IJ, Dijkstra-Kersten SMA, de Mul N, Lalmohamed A, Slooter AJC. The risk of delirium after sedation with propofol or midazolam in ICU patients. Br J Clin Pharmacol. 2024;90(6):1471-9. DOI: 10.1186/s12871-023-02158-1

- 42. Detroyer E, Timmermans A, Segers D, Meyfroidt G, Dubois J, Van Assche A, et al. Psychometric properties of the Intensive Care Delirium Screening Checklist when used by bedside nurses. BMC Nurs. 2020;19(1):1-10. DOI: 10.1186/s12912-020-00415-z
- 43. Henao-Castaño ÁM, Lozano González L, Gómez Tovar LO. Validation to Spanish of nursing assessment scale for early diagnosis of delirium Nu-DESC. Invest Educ Enferm. 2023;41(2). DOI: 10.17533/udea.iee. v41n2e03
- 44. Salluh JIF, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ DOI: 10.1136/bmj.h2538
- 45. Wilcox ME, Girard TD, Hough CL. Delirium and long-term cognition in critically ill patients. BMJ. 2021;373. DOI: 10.1136/bmj.n1007
- 46. Lin C, Clark R, Tu P, Bosworth HB, Zullig LL. Breast cancer oral anti-cancer medication adherence: A systematic review of psychosocial motivators and barriers. Breast Cancer Res Treat. 2017;165(2):247-60. DOI: 10.1007/s10549-017-4317-2
- 47. Van Der Glas HW, Van Grootel RJ. The index "Treatment Duration Control" for enabling randomized trials with variation in chronic pain treatment duration. BMC Med Res Methodol. 2013;13(1). DOI: 10.1186/1471-2288-13-123
- 48. Rangappa R. Delirium in Ventilated Patients: Is ABCDEF Bundle the Solution? Indian J Crit Care Med. 2021;25(7):743. DOI: 10.5005/jp-journals-10071-23903
- 49. Frade-Mera MJ, Arias-Rivera S, Zaragoza-García I, Martí JD, Gallart E, San José-Arribas A, et al. The impact of ABCDE bundle implementation on patient outcomes: A nationwide cohort study. Nurs Crit Care. 2022;27(6):772-83. DOI: 10.1111/nicc.12740
- 50. Espinoza Suarez NR, Urtecho M, Nyquist CA, Jaramillo C, Yeow ME, Thorsteinsdottir B, et al. Consequences of suboptimal communication for patients with limited English proficiency in the ICU. J Crit Care. 2021;61:247-51. DOI: 10.1016/j.jcrc.2020.10.012
- 51. Delaney LJ, Elliott R. Sleep disturbance in ICU: A pathway to delirium. Intensive Crit Care Nurs. 2025;90:104138.
- 52. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-10. DOI: 10.1016/j.iccn.2025.104138
- 53. Barr J, Fraser GL, Puntillo K, Ely EW, Gélinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult ICU patients. Crit Care Med. 2013;41(1):263-306. DOI: 10.1097/CCM.0b013e3182783b72
- 54. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306-16. DOI: 10.1056/NEJMoa1301372

FINANCING

This article is part of the academic and scientific activities carried out within the project "Nursing and clinical psychology care from the perspective of health promotion and disease prevention in groups living in poverty and their inequalities: Case study of the El Cambio parish's '' (Health and Well-being Center)," funded by the Universidad Metropolitana, Machala Campus, Machala, Ecuador.

This project is part of the institutional line "Education and health promotion in vulnerable centers and communities in Ecuador" and responds to the strategic line of contributing to social development through the improvement of education, health, and citizen security.

Likewise, the authors declare that they did not receive additional external funding for the development of this research. The study is part of the thesis work for the Master's Degree in Nursing with a Specialization in Critical Care at the State University of Milagro (UNEMI).

The research benefited from the academic advice and methodological review of research experts from the

23 Zambrano Requelme JF, et al

Postgraduate Unit, who accompanied the design and development process of the study, ensuring scientific and technical rigor during its preparation.

No external funding was obtained from public or private entities for the preparation and writing of this manuscript.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest related to the conduct, analysis, interpretation of data, or publication of this article. They also state that there are no personal, academic, financial, or institutional interests that may have influenced the results or the writing of the manuscript.

AUTHORSHIP CONTRIBUTION

Conceptualization: Joseph Fernando Zambrano-Requelme, María Fernanda Maya-Maldonado.

Data curation: Carol Yuleisbi Moncada-Yanza, María José Sagal-Rodríguez.

Formal analysis: Joseph Fernando Zambrano-Requelme, Scarlet Charlotte Angel Lino.

Research: Carol Yuleisbi Moncada-Yanza, María José Sagal-Rodríguez, María Fernanda Maya-Maldonado.

Methodology: Jeannette Mercedes Acosta-Núñez, Joseph Fernando Zambrano-Requelme.

Project management: Joseph Fernando Zambrano-Reguelme.

Resources: María Fernanda Maya-Maldonado. Software: Carol Yuleisbi Moncada-Yanza. Supervision: Jeannette Mercedes Acosta Núñez.

Validation: Jeannette Mercedes Acosta Núñez, Scarlet Charlotte Angel Lino.

Visualization: María José Sagal-Rodríguez.

Writing - original draft: Joseph Fernando Zambrano-Requelme, María Fernanda Maya-Maldonado.

Writing - review and editing: Jeannette Mercedes Acosta Núñez.