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ABSTRACT

Breast cancer affects over 2,3 million individuals annually worldwide. Traditional diagnostic methods face
limitations in consistency and objectivity, particularly in resource-constrained settings. This study developed
a logistic regression-based clinical decision support system for breast cancer classification. We analyzed
the Wisconsin Diagnostic Breast Cancer dataset containing 569 samples with 30 quantitative morphological
features from fine needle aspirate cytology. The dataset comprised 357 benign and 212 malighant cases.
Data underwent standardization via StandardScaler, followed by 75-25 train-test partitioning (426 training,
143 testing samples). We evaluated the logistic regression model through confusion matrix analysis, ROC
curve assessment, threshold optimization via Youden’s Index, and probability calibration using Expected
Calibration Error (ECE). The model achieved 95,8 % accuracy, 96,2 % sensitivity, and 95,6 % specificity on
independent testing data, with AUC-ROC of 0,993. Threshold optimization identified 0,560 as the optimal
decision boundary, yielding 3,77 % false negative rate and 4,44 % false positive rate. Probability calibration
demonstrated reliable predictions with ECE of 0,0390, improved to 0,0328 through isotonic regression. The
model correctly classified 137 of 143 test samples (86 true negatives, 51 true positives, 4 false positives, 2
false negatives). The logistic regression model demonstrated strong discriminative performance for breast
cancer classification. However, single train-test validation and dataset-specific characteristics require
cautious interpretation. Cross-validation and external validation remain necessary for clinical translation.

Keywords: Breast Cancer Classification; Logistic Regression; Clinical Decision Support; Probability Calibration;
Fine Needle Aspirate Cytology.

RESUMEN

El cancer de mama afecta a mas de 2,3 millones de personas al ano en todo el mundo. Los métodos de
diagnostico tradicionales tienen limitaciones en cuanto a consistencia y objetividad, especialmente en
entornos con recursos limitados. En este estudio se desarrollo un sistema de apoyo a la toma de decisiones
clinicas basado en la regresion logistica para la clasificacion del cancer de mama. Se analizé el conjunto de
datos Wisconsin Diagnostic Breast Cancer, que contiene 569 muestras con 30 caracteristicas morfologicas
cuantitativas obtenidas mediante citologia por aspiracion con aguja fina. El conjunto de datos comprendia
357 casos benignos y 212 malignos. Los datos se sometieron a una estandarizacion mediante StandardScaler,
seguida de una particion de entrenamiento-prueba 75-25 (426 muestras de entrenamiento y 143 de prueba).
Evaluamos el modelo de regresion logistica mediante el analisis de la matriz de confusion, la evaluacion de
la curva ROC, la optimizacion del umbral mediante el indice de Youden y la calibracion de la probabilidad
utilizando el error de calibracion esperado (ECE). El modelo alcanzé una precision del 95,8 %, una sensibilidad
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del 96,2 % y una especificidad del 95,6 % en datos de prueba independientes, con un AUC-ROC de 0,993. La
optimizacion del umbral identifico 0,560 como el limite de decision dptimo, lo que dio lugar a una tasa de
falsos negativos del 3,77 % y una tasa de falsos positivos del 4,44 %. La calibracion de la probabilidad demostro
predicciones fiables con un ECE de 0,0390, que mejor6 a 0,0328 mediante regresion isoténica. El modelo
clasifico correctamente 137 de las 143 muestras de prueba (86 negativos verdaderos, 51 positivos verdaderos,
4 falsos positivos y 2 falsos negativos). El modelo de regresion logistica demostro un fuerte rendimiento
discriminatorio para la clasificacion del cancer de mama. Sin embargo, la validacion de un solo entrenamiento
y las caracteristicas especificas del conjunto de datos requieren una interpretacion cautelosa. La validacion
cruzada y la validacion externa siguen siendo necesarias para la traslacion clinica.

Palabras clave: Clasificacion del Cancer de Mama; Regresion Logistica; Apoyo a la Toma de Decisiones Clinicas;
Calibracion de Probabilidades; Citologia por Aspiracion con Aguja Fina.

INTRODUCTION

Cancer represents one of the most formidable challenges in modern medicine, characterized by uncontrolled
cellular proliferation and the potential for metastatic spread to distant organs. This group of diseases accounts
for nearly 10 million deaths annually worldwide, with profound impacts on healthcare systems and patient
quality of life. Different cancer types exhibit distinct biological behaviors, growth patterns, and clinical
outcomes, ranging from indolent lesions requiring minimal intervention to aggressive malignancies demanding
intensive multimodal therapy.

Among these malighancies, breast cancer continues to pose a significant challenge in modern oncology,
ranking as the second leading cause of cancer-related mortality among women worldwide and affecting over
2,3 million individuals annually.®) The heterogeneous nature of breast malignancies, along with the critical
importance of early detection for treatment efficacy and patient survival, highlights the essential need for
accurate, reliable, and accessible diagnostic methodologies.?? While traditional diagnostic approaches form
the foundation of current clinical practice, they encounter inherent limitations in consistency, objectivity,
and accessibility across diverse healthcare settings, particularly in resource-constrained environments where
specialized expertise may be limited.®

The advent of digital pathology and computational analysis has fundamentally transformed the field of
medical diagnostics, presenting unprecedented opportunities to enhance diagnostic accuracy through
quantitative morphological assessment.®® Fine needle aspiration cytology, a minimally invasive diagnostic
procedure, produces extensive morphological data from cellular specimens, which can be systematically
analyzed using advanced computational techniques.” Nevertheless, the interpretation of these morphological
features has traditionally depended heavily on the expertise of pathologists, introducing potential variability
in diagnostic consistency and creating obstacles to standardized care delivery.®

Cancer classification represents a fundamental supervised learning problem wherein computational
algorithms learn to distinguish between malignant and benign lesions based on quantifiable features extracted
from clinical specimens. Machine learning technologies have emerged as formidable tools for addressing this
diagnostic challenge.®'® Recent advancements in artificial intelligence have yielded promising results in
various oncological applications, ranging from radiological imaging interpretation to histopathological analysis,
thereby suggesting significant opportunities for the development of clinical decision support systems. "2

Among classification algorithms, logistic regression occupies a distinctive position in clinical applications
due to its interpretability, probabilistic output, and computational efficiency. Unlike black-box approaches,
logistic regression provides transparent decision-making processes through interpretable coefficients, generates
calibrated probability estimates rather than mere class labels, and requires minimal computational resources
suitable for resource-constrained healthcare settings.

However, the clinical deployment of logistic regression for cancer classification necessitates careful attention
to threshold optimization and probability calibration. Threshold optimization determines the decision boundary
that balances sensitivity and specificity according to clinical priorities, while probability calibration ensures that
predicted probabilities accurately reflect true malignancy risk. The integration of machine learning approaches
with morphological feature analysis represents a convergent pathway toward more objective, consistent, and
accessible diagnostic capabilities.(®

Despite technological advancements, significant gaps remain in the clinical translation of machine learning
diagnostic tools. Numerous existing studies predominantly focus on classification accuracy, often overlooking
the probabilistic reliability, clinical interpretability, and threshold optimization requirements essential for
practical clinical application.(415.16,17.18,19,20.21,22) The recognition that classification accuracy alone is insufficient
for clinical applications emerged gradually through several decades of statistical and medical research. In the
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1980s, researchers began documenting discrepancies between predicted probabilities and observed outcomes
in logistic regression models applied to cardiovascular risk prediction. @29

Contemporary machine learning research has witnessed renewed attention to calibration assessment,
particularly as complex algorithms like deep neural networks often produce overconfident predictions despite
high classification accuracy.®29 Modern frameworks now recognize calibration as essential for clinical decision
support systems, where miscalibrated probabilities can lead to inappropriate treatment decisions regardless
of discriminative performance.®?” The absence of comprehensive calibration assessment in diagnostic modeling
can be a significant oversight, as clinical decision-making necessitates not only accurate classifications but also
reliable confidence estimates that can be meaningfully interpreted as risk probabilities. 829,30

Moreover, the predominant focus of machine learning methodologies in medical diagnosis is on algorithmic
complexity rather than clinical interpretability. This results in the development of advanced models that, while
achieving notable performance metrics, remain largely opaque to clinicians.®' This lack of interpretability
presents significant challenges to clinical adoption, as healthcare providers need to comprehend the underlying
decision-making processes to effectively incorporate computational tools into existing diagnostic workflows.
(18,31 |In contrast to complex algorithmic approaches, logistic regression offers intrinsic interpretability through
transparent coefficient estimation and probabilistic reasoning, making it particularly suitable for clinical decision
support applications. The interpretability of logistic regression extends beyond model coefficients to encompass
two critical components emphasized in this study: threshold optimization and probability calibration. %33

The Wisconsin Diagnostic Breast Cancer dataset represents a landmark resource in computational diagnostic
research.®43 This dataset provides a comprehensive quantitative characterization of cellular morphological
features derived from fine needle aspirate samples, facilitating a detailed analysis of the relationship between
morphological patterns and diagnostic outcomes. This publicly available dataset comprises 569 digitized
fine needle aspirate (FNA) samples from breast masses, with each sample characterized by 30 quantitative
morphological features derived from digital image analysis of cell nuclei present in the aspirate specimens.

The objective of this study was to evaluate the clinical applicability of logistic regression for breast cancer
classification using the Wisconsin Diagnostic Breast Cancer dataset. This evaluation specifically addresses the
identified gaps in current machine learning diagnostic research: the absence of systematic threshold optimization
methodologies that align decision boundaries with clinical priorities, the limited assessment of probability
calibration quality that ensures reliable risk estimation, and the need for interpretable models that facilitate
clinical adoption. By focusing on these underexplored aspects rather than solely on classification accuracy,
this study contributes a methodological framework for translating machine learning models into clinically
actionable diagnostic support tools. This systematic approach provides a methodological contribution that
enhances the understanding of how machine learning models can be effectively evaluated and implemented in
clinical diagnostic applications.

METHOD

This study represents a descriptive observational study with a retrospective cross-sectional design. No
intervention was performed by the researchers; instead, we conducted secondary analysis of pre-existing data
to develop and evaluate a diagnostic classification model. The study utilized previously collected morphological
measurements to assess the discriminative performance, threshold optimization, and probability calibration of
logistic regression for breast cancer classification.

This study employed the Wisconsin Diagnostic Breast Cancer (WDBC) dataset,®® which consists of 569
digitized fine-needle aspirate samples from breast masses. Each sample is characterized by 30 quantitative
morphological features derived from cell nuclei measurements. These features are systematically categorized
into three statistical aggregations: mean values, standard errors, and worst (largest) values for ten core
morphological characteristics, namely radius, texture, perimeter, area, smoothness, compactness, concavity,
concave points, symmetry, and fractal dimension.

The target variable pertains to the histopathological diagnosis, encoded as a binary classification wherein
malignant cases are identified as positive instances (M=1) and benign cases as negative instances (B=0). The
data preprocessing phase involved the removal of the patient identification variable to prevent data leakage
and the application of label encoding transformation to convert categorical diagnoses into numerical format,
utilizing scikit-learn’s LabelEncoder class. An analysis of missing values was conducted across all features,
confirming complete data integrity with zero null values, thereby obviating the need for imputation strategies.
The final dataset retained all 30 morphological features for subsequent analysis.

Due to the considerable variation in scale among morphological features, which range from fractional
smoothness measurements to calculations involving areas of thousands of units, standardization was employed
to ensure that each feature contributes equally to the logistic regression objective function. The StandardScaler
transformation was applied in accordance with the following equation:
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Where x, represents the original feature value, p; is the feature mean, o is the feature standard deviation,
and z, is the standardized value.

To mitigate the risk of data leakage, the scaler was exclusively fitted to the training data before being
applied to both the training and testing datasets. The data was partitioned using a 75-25 train-test split,
facilitated by scikit-learn’s train_test_split function with a random_state set to 0 to ensure reproducibility. This
process resulted in 426 training samples and 143 testing samples.

Figure 1 illustrates that this division ensures an adequate amount of training data for model development
while retaining sufficient samples for independent performance evaluation. Following partitioning, feature
standardization was conducted, with the scaler being fitted exclusively to the training data and the transformation
applied to both sets. This approach prevents information leakage that could potentially compromise the validity
of the evaluation.
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Figure 1. Research Flowchart

The model implementation employed logistic regression with the L-BFGS solver and L2 regularization,
utilizing default parameters.©”:3® During the training phase, the model was fitted to standardized training
data to determine optimal feature coefficients for binary classification, with the capability of predicting
probabilities. The use of scikit-learn’s LogisticRegression class with default parameters is indicative of standard
practice in clinical machine learning applications.

The logistic regression model calculates the probability of malignancy by employing the sigmoid function,
which transforms linear combinations of standardized features into probability values ranging from zero to one.
Given that the WDBC dataset contains 30 morphological features (as described above), the model computes
the following relationship:

1
1 + ePO+EL, Bixi

Py =11X) =

Where B@ represents the intercept term, Bi denotes individual feature coefficients for each of the 30
morphological features, xi indicates the corresponding standardized feature values, and p equals the total
number of features (30 in this study). This probabilistic framework enables not only binary classification
decisions but also confidence quantification for clinical risk assessment.

Performance Evaluation and ROC Analysis

The assessment of model performance utilized a comprehensive evaluation framework tailored to meet
the clinical demands of diagnostic support systems. The evaluation focused on confusion matrix analysis,
addressing both sensitivity to malignant cases and specificity for benign classifications. The elements of the
confusion matrix (True Negatives, False Positives, False Negatives, True Positives) facilitated the computation
of standard binary classification metrics.

Receiver Operating Characteristic (ROC) analysis offers a threshold-independent evaluation of performance,
which is crucial for comprehending model behavior across various clinical decision-making contexts.®” The ROC
curve, constructed by plotting the True Positive Rate against the False Positive Rate across different probability
thresholds, facilitates the assessment of discriminative ability independent of specific cutoff values.“

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) serves as a quantitative measure
of overall discriminative performance, with values ranging from 0,5, indicating random classification, to 1,0,

https://doi.org/10.56294/saludcyt20252241 ISSN: 2796-9711


https://doi.org/10.56294/saludcyt20252241

5 Watrianthos R, et al

signifying perfect discrimination. This metric offers a singular summary statistic for the comparison of model
performance and the assessment of clinical utility.

Probability Calibration Assessment

The assessment of model calibration is crucial for ensuring the provision of reliable probability estimates
in clinical decision support systems. Accurately calibrated probabilities allow for the interpretation of model
confidence as true risk estimates. The quality of calibration is quantified using the Expected Calibration Error
(ECE),“" which measures the average difference between predicted probabilities and actual outcomes across
probability bins:

& Bm
ECE = 2 T|acc(Bm) — conf(Bm)|
m=1

Where Bm represents samples in bin m, acc(Bm)denotes the accuracy within the bin, conf(Bm) indicates the
average confidence, and n represents the total sample count. ECE values below 0,05 generally indicate well-
calibrated models suitable for clinical applications.

Techniques for improving calibration, such as Platt scaling and isotonic regression,“*) were assessed to
enhance the reliability of probability estimates for clinical decision support systems. Platt scaling utilizes a
sigmoid transformation of model outputs, whereas isotonic regression employs a non-parametric monotonic
transformation to improve calibration while maintaining the ranking order.

Ethical Considerations

This study utilized the Wisconsin Diagnostic Breast Cancer dataset, which is publicly available through the
University of California Irvine Machine Learning Repository for research and educational purposes. The original
data collection at the University of Wisconsin Clinical Sciences Center (1989-1991) was conducted under
appropriate institutional review and informed consent procedures as documented in the original publications.
(44,45)

The dataset contains fully de-identified, anonymized patient information with no personal identifiers,
demographic data, or any information that could be used to re-identify individuals. Patient identification
numbers were removed from the dataset prior to public release. The secondary analysis of this de-identified,
publicly available dataset does not constitute human subjects research as defined by international ethical
guidelines (Declaration of Helsinki) and institutional review board standards.

As this study involved only computational analysis of pre-existing, de-identified, publicly available data
without any patient contact, recruitment, or intervention, formal institutional review board approval was
not required according to the regulations governing secondary data analysis at our institution. Nevertheless,
we adhered to principles of responsible research conduct, including transparent reporting of methodological
procedures, acknowledgment of data sources, and commitment to reproducible science.

Limitations of Secondary Data Analysis

This study utilized the Wisconsin Diagnostic Breast Cancer dataset, which is publicl As a secondary analysis
of pre-existing data, this study inherits limitations from the original data collection procedures, including
potential selection bias in the patient population, temporal constraints (data collected 1989-1991 may not
reflect current clinical populations), and lack of control over feature extraction protocols. The geographic
restriction to a single institution (University of Wisconsin) may limit generalizability to diverse clinical settings
and patient populations.

RESULTS

The Wisconsin Diagnostic Breast Cancer dataset consists of 569 samples, all of which exhibit complete data
integrity, with no missing values across the 30 morphological features. The distribution of the target variable
indicates 357 benign cases (62,7 %) and 212 malignant cases (37,3 %), reflecting a moderate class imbalance
with a benign-to-malignant ratio of 1,68:1. Following a 75-25 train-test split, the training set comprises 426
samples, while the test set includes 143 samples, maintaining similar class distributions.

The logistic regression model demonstrated an overall accuracy of 95,8 % on the independent test set,
correctly predicting 137 out of 143 total samples. The analysis of the confusion matrix revealed 86 true
negatives, 4 false positives, 2 false negatives, and 51 true positives (table 1).
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Table 1. Confusion Matrix and Primary Performance Metrics

Metric Value Clinical Interpretation

True Negatives (TN) 86 Benign cases correctly identified

False Positives (FP) 4 Benign cases misclassified as malignant

False Negatives (FN) 2 Malignant cases misclassified as benign

True Positives (TP) 51 Malignant cases correctly identified
Sensitivity (Recall) 96,2 % Proportion of malignant cases detected
Specificity 95,6 % Proportion of benign cases correctly identified
Precision (PPV) 92,7 % Accuracy of malignant predictions

F1-Score 0,944 Harmonic mean of precision and recall
Accuracy 95,8 % Overall classification correctness

Figure 2 presents a heatmap of the confusion matrix, with the majority of predictions concentrated along
the diagonal, indicating accurate classifications. The visualization displays the distribution of true negatives
(86), false positives (4), false negatives (2), and true positives (51), with darker blue shades representing higher
counts. The matrix evidences strong performance, as most predictions are concentrated along the diagonal.

Actual

-20

- 10

Predicted

Figure 2. Confusion Matrix
Note: the matrix displays classification results on the independent test set (n=143 samples) using logistic regression with
default threshold (0,5)

ROC Analysis and Threshold Optimization

The Receiver Operating Characteristic (ROC) analysis yielded an Area Under the Curve (AUC-ROC) of 0,993,
indicating an almost perfect capacity to differentiate between malignant and benign cases. The ROC curve
demonstrated a rapid ascent towards the upper-left corner, with minimal false positive rates across most
sensitivity levels. Figure 3 presents the ROC curve alongside the sensitivity-specificity trade-off analysis,
illustrating the model’s exceptional discriminative performance and the relationship between sensitivity and
specificity across various probability thresholds.

The left panel illustrates the Receiver Operating Characteristic (ROC) curve with an Area Under the Curve
(AUC) of 0,993, indicating a near-perfect ability to discriminate between malignant and benign cases. The
curve’s rapid ascent towards the upper-left corner signifies excellent performance across all thresholds. The
right panel presents the trade-off between sensitivity and specificity across various probability thresholds,
demonstrating how these metrics fluctuate as the decision boundary is adjusted.
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Figure 3. Receiver Operating Characteristic (ROC) Curve
Note: ROC curve generated from predicted probabilities on the test set (n=143 samples). The diagonal dashed line
represents random classification (AUC=0,5)
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Figure 4. ROC Curve with Optimal Threshold Points
Note: optimal thresholds identified using Youden’s Index (maximizing J = Sensitivity + Specificity - 1), minimum distance
to perfect classification point (0,1), and default threshold (0,5). Test set, n=143 samples.

Threshold optimization utilizing Youden’s Index determined the optimal decision boundary at 0,560,
effectively balancing sensitivity and specificity for clinical decision-making. At this threshold, the model
achieved a sensitivity of 96,2 % and a specificity of 95,6 %. Figure 4 illustrates the ROC curve, highlighting the
optimal threshold points, including Youden’s optimal (0,560), distance optimal (0,560), and default (0,500)
thresholds, thereby demonstrating the convergence of multiple optimization criteria at similar threshold values.

Table 2 presents the comprehensive evaluative analysis of the developed logistic regression model, elucidating
the diagnostic dynamics that arise with systematic modifications to the decision threshold. This table examines
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the model’s performance across various threshold values, ranging from 0,3 to 0,7, including the optimal point
determined through the Youden index and the minimum distance approach to the ideal ROC point.

Table 2. Performance Across Multiple Decision Thresholds

Threshold Sensitivity Specificity Precision F1-Score Accuracy FN FP

0,300 96,2 % 92,2 % 87,9 % 91,9 % 93,7 % 2

0,400 96,2 % 93,3 % 89,5 % 92,7 % 94,4 % 2 6
0,500 96,2 % 95,6 % 92,7 % 94,4 % 95,8 % 2 4
0,560 96,2 % 95,6 % 92,7 % 94,4 % 95,8 % 2 4
0,600 92,5 % 96,7 % 94,2 % 93,3 % 95,1 % 4 3
0,700 90,6 % 100,0 % 100,0 % 95,0 % 96,5 % 5 0

Note: performance metrics calculated across six probability thresholds using the test
set (n=143 samples: 53 malignant, 90 benign). FN = False Negatives; FP = False Positives

At lower threshold values, such as 0,3, the sensitivity of the test reaches a peak of 96,2 %, although this
comes at the cost of a significant reduction in specificity, leading to an increased rate of false positives. This
configuration is advantageous in preliminary screening settings where the priority is on early detection rather
than precise accuracy. In contrast, employing a higher threshold, such as 0,7, results in perfect specificity at
100 %, but this is accompanied by a marked decline in sensitivity, thereby increasing the likelihood of false
negatives. Such an approach poses a risk in clinical environments, as it may result in the failure to identify
actual cancer cases.

The optimal threshold, approximately 0,56, achieves a balance between sensitivity and specificity,
consistently yielding a high F1-score and accuracy. This threshold mathematically maximizes the Youden index
(J = Sensitivity + Specificity - 1), a metric frequently employed in epidemiology to ascertain the ideal diagnostic
cut-off. Clinically, this table demonstrates that the selection of a threshold is not solely a technical decision
but also an ethical and contextual one. For instance, hospitals with limited resources might opt for a more
conservative threshold to alleviate the burden of follow-up examinations, whereas national screening centers
might adopt a more aggressive threshold to minimize the risk of false negatives.

Probability Calibration Analysis

The evaluation of model calibration demonstrated a Brier Score of 0,0298 and an Expected Calibration Error
(ECE) of 0,0390. The calibration plot displayed the relationship between predicted probabilities and observed
outcomes across probability bins. The distribution of predicted probabilities showed that benign cases had
predicted probabilities predominantly in the 0,0-0,1 range, while malignant cases had predicted probabilities
concentrated in the 0,9-1,0 range. Few samples exhibited predicted probabilities in the intermediate range of
0,3-0,7.

Calibration Plot (Reliability Diagram) Distribution of Predicted Probabilities Calibration Methods Comparison
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Figure 5. Calibration Characteristics
Note: Left panel: reliability diagram comparing predicted probabilities (x-axis) with observed frequencies (y-axis) on test
set. Middle panel: distribution of predicted probabilities by true class. Right panel: comparison of calibration methods.
Test set, n=143 samples
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Figure 5 presents the principal calibration characteristics, emphasizing the reliability diagram that contrasts
predicted with actual outcomes, the probability distribution patterns across classes, and the comparative
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efficacy of various calibration methods. Techniques aimed at enhancing calibration demonstrated modest yet
significant improvements in probability reliability.

Table 3. Calibration Metrics and Improvement Methods

Calibration Method Brier Score Expected Calibration Error Assessment
Original Model 0,0298 0,0390 Well calibrated
Platt Scaling 0,0296 0,0378 Slight improvement
Isotonic Regression 0,0287 0,0328 Best calibration

Note: calibration metrics computed on test set (n=143 samples) for the original logistic
regression model and two post-hoc calibration methods

As shown in table 3, isotonic regression emerged as the most effective calibration method, reducing the
Expected Calibration Error from 0,0390 to 0,0328 and enhancing the Brier Score from 0,0298 to 0,0287. This
non-parametric approach provided superior calibration enhancement compared to Platt scaling, which achieved
a more limited improvement, reducing the ECE to 0,0378.

DISCUSSION

The logistic regression model exhibited performance metrics that surpass conventional benchmarks for
medical diagnostic systems. Optimal threshold analysis underscores the significance of balancing sensitivity and
specificity in accordance with clinical priorities. The optimal Youden Index threshold of 0,560 offers an ideal
mathematical equilibrium; however, clinical implementation necessitates consideration of the relative costs
associated with false negatives and false positives. In the context of cancer screening, the clinical repercussions
of failing to detect cancer generally surpass the costs of unnecessary follow-up procedures. Threshold analysis
indicates that reducing the decision threshold to 0,400 preserves the same sensitivity while offering a more
suitable clinical compromise. Conversely, a threshold of 0,700 achieves perfect specificity but results in five
undetected cancer cases, which may be deemed clinically unacceptable.

The robust calibration performance significantly enhances the clinical applicability of the model by delivering
reliable probability estimates for risk stratification. An Expected Calibration Error below 0,05 suggests that
the predicted probabilities can be interpreted as actual risk estimates, thereby facilitating more nuanced
clinical decision-making beyond binary classification. This calibration quality compares favorably with existing
literature on breast cancer classification systems. A systematic review by Dhanya et al.“® examining machine
learning approaches for breast cancer diagnosis using the WDBC dataset reported that most studies achieved
classification accuracies between 93-97 %, similar to our 95,8 %, but fewer than 15 % of reviewed studies
assessed probability calibration. Among those that did evaluate calibration, ECE values ranged from 0,042 to
0,089 for logistic regression models, indicating that our ECE of 0,0390 represents above-average calibration
qual-ity. (47,48,49)

The calibration improvement achieved through isotonic regression, although modest, underscores the
value of post-processing techniques in enhancing probability reliability. Well-calibrated probabilities allow
for integration with existing clinical risk assessment frameworks and support personalized patient counseling
regarding malignancy risk. The calibration improvement achieved through isotonic regression in our study
(ECE reduced from 0,0390 to 0,0328) aligns with findings from Bella et al.®®, who demonstrated that isotonic
regression consistently outperforms Platt scaling for logistic regression calibration in medical datasets.
However, our improvement magnitude (15,9 % ECE reduction) is more modest than the 23-35 % reductions
reported by a study for imbalanced datasets, possibly reflecting that our original model was already reasonably
well-calibrated.

Our findings contribute to the growing evidence base supporting interpretable, calibrated models for clinical
deployment, as advocated by Christodoulou et al.®"; who found no performance advantage for complex machine
learning methods over logistic regression in clinical prediction tasks when considering both discrimination and
calibration. The systematic threshold optimization at 0,560 identified in our study provides actionable guidance
for clinical implementation, contrasting with studies that report only default threshold (0,5) performance
without exploring sensitivity-specificity trade-offs relevant to screening versus diagnostic contexts. 52

Methodological Considerations, Limitation, and Implications for Clinical Decision

Such exceptional performance metrics may suggest potential overfitting to the specific characteristics of
the Wisconsin dataset. Although the single train-test validation approach is computationally efficient, it offers
limited evidence regarding the model’s robustness across diverse patient cohorts. The lack of cross-validation
methodology hinders the assessment of performance consistency and the statistical significance of the reported
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metrics. The Wisconsin Diagnostic Breast Cancer dataset, although extensively utilized in machine learning
research, constitutes a curated academic dataset that may not entirely reflect the complexity and variability
encountered in routine clinical practice. The systematic categorization of features into mean, standard error,
and worst value categories, while methodologically robust, may introduce systematic patterns that enhance
classification performance but potentially limit generalizability to real-world clinical scenarios.

The performance characteristics indicate potential utility as a diagnostic support tool, particularly in screening
applications where high sensitivity is prioritized. However, several factors constrain its immediate readiness
for clinical implementation. The exceptional performance metrics necessitate validation on independent
clinical datasets from diverse institutions and patient populations to establish generalizability. Furthermore,
the absence of feature importance analysis limits clinical interpretability and hinders the identification of the
most diagnostically relevant morphological characteristics.

Study Limitations and Future Research Directions

The principal limitation of this study is the reliance on a single train-test validation approach, which fails to
provide adequate evidence for statistical significance and performance stability. Although the Wisconsin dataset
is well-established for research purposes, it may not fully represent the diverse range of cases encountered
in various clinical settings. Furthermore, the absence of hyperparameter optimization suggests that the
performance may not reflect the optimal configuration for this specific dataset and task. Additionally, the lack
of comparison with alternative algorithms restricts the understanding of relative performance advantages and
does not offer a baseline for performance assessment.

While the exceptional performance metrics are promising, they necessitate a critical evaluation and
substantial further validation prior to consideration for clinical deployment. Despite these limitations, the
systematic approach to threshold optimization and probability calibration exhibits methodological sophistication
suitable for clinical applications and establishes a foundation for future validation studies with more rigorous
experimental designs.

To validate these findings, it is essential to employ rigorous cross-validation methodologies, conduct external
validation using independent clinical datasets, and compare the results with established diagnostic tools and
alternative machine learning approaches. Conducting a feature importance analysis would enhance clinical
interpretability by identifying the most diagnostically relevant morphological characteristics among the 30
available features. The integration of ensemble methods or more sophisticated algorithms could facilitate
performance benchmarking and potentially enhance robustness. Developing clinical decision support interfaces
that incorporate probability estimates into existing diagnostic workflows represents a logical progression for
translating these research findings into practical clinical applications.

CONCLUSIONS

This study addressed its objective of evaluating the clinical applicability of logistic regression for breast
cancer classification by demonstrating that interpretable machine learning models can achieve clinically
relevant performance when appropriately optimized and calibrated. The systematic evaluation framework
encompassing threshold optimization and probability calibration assessment provides evidence that logistic
regression represents a viable approach for clinical decision support in breast cancer diagnosis, particularly in
settings where model interpretability and computational efficiency are priorities.

The principal conclusion of this study is that optimizing thresholds using clinically meaningful metrics
enables classification decisions to align with institutional priorities concerning the balance between sensitivity
and specificity. Additionally, the assessment and refinement of probability calibration techniques ensure that
model outputs can be interpreted reliably as estimates of actual risk, rather than arbitrary confidence scores.
Furthermore, a comprehensive model evaluation that encompasses discrimination, calibration, and threshold
selection offers a more robust foundation for clinical application than traditional assessments that primarily
focus on accuracy.

However, important limitations constrain immediate clinical implementation. The reliance on single train-
test validation without rigorous cross-validation or external validation limits confidence in performance
generalizability across diverse patient populations and clinical settings. The Wisconsin dataset, while
methodologically valuable as a research benchmark, represents a curated collection from a single institution
during a specific time period and may not fully reflect the morphological variability encountered in contemporary
clinical practice. Dataset-specific optimization may contribute to the observed performance levels, necessitating
cautious interpretation and mandatory validation on independent clinical cohorts before deployment.

Future research priorities include external validation using multi-institutional datasets representing diverse
patient demographics and imaging protocols, implementation of rigorous cross-validation methodologies to
establish statistical confidence in performance estimates, prospective clinical evaluation comparing model-
assisted diagnosis against standard clinical workflows, and investigation of model performance across patient
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subgroups to assess potential disparities. Additionally, development of clinical decision support interfaces that
effectively communicate probability estimates and threshold-dependent trade-offs to clinicians represents an
essential step toward translating research findings into practical diagnostic tools.
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