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ABSTRACT

Breast cancer affects over 2,3 million individuals annually worldwide. Traditional diagnostic methods face 
limitations in consistency and objectivity, particularly in resource-constrained settings. This study developed 
a logistic regression-based clinical decision support system for breast cancer classification. We analyzed 
the Wisconsin Diagnostic Breast Cancer dataset containing 569 samples with 30 quantitative morphological 
features from fine needle aspirate cytology. The dataset comprised 357 benign and 212 malignant cases. 
Data underwent standardization via StandardScaler, followed by 75-25 train-test partitioning (426 training, 
143 testing samples). We evaluated the logistic regression model through confusion matrix analysis, ROC 
curve assessment, threshold optimization via Youden’s Index, and probability calibration using Expected 
Calibration Error (ECE). The model achieved 95,8 % accuracy, 96,2 % sensitivity, and 95,6 % specificity on 
independent testing data, with AUC-ROC of 0,993. Threshold optimization identified 0,560 as the optimal 
decision boundary, yielding 3,77 % false negative rate and 4,44 % false positive rate. Probability calibration 
demonstrated reliable predictions with ECE of 0,0390, improved to 0,0328 through isotonic regression. The 
model correctly classified 137 of 143 test samples (86 true negatives, 51 true positives, 4 false positives, 2 
false negatives). The logistic regression model demonstrated strong discriminative performance for breast 
cancer classification. However, single train-test validation and dataset-specific characteristics require 
cautious interpretation. Cross-validation and external validation remain necessary for clinical translation.

Keywords: Breast Cancer Classification; Logistic Regression; Clinical Decision Support; Probability Calibration; 
Fine Needle Aspirate Cytology.

RESUMEN

El cáncer de mama afecta a más de 2,3 millones de personas al año en todo el mundo. Los métodos de 
diagnóstico tradicionales tienen limitaciones en cuanto a consistencia y objetividad, especialmente en 
entornos con recursos limitados. En este estudio se desarrolló un sistema de apoyo a la toma de decisiones 
clínicas basado en la regresión logística para la clasificación del cáncer de mama. Se analizó el conjunto de 
datos Wisconsin Diagnostic Breast Cancer, que contiene 569 muestras con 30 características morfológicas 
cuantitativas obtenidas mediante citología por aspiración con aguja fina. El conjunto de datos comprendía 
357 casos benignos y 212 malignos. Los datos se sometieron a una estandarización mediante StandardScaler, 
seguida de una partición de entrenamiento-prueba 75-25 (426 muestras de entrenamiento y 143 de prueba). 
Evaluamos el modelo de regresión logística mediante el análisis de la matriz de confusión, la evaluación de 
la curva ROC, la optimización del umbral mediante el índice de Youden y la calibración de la probabilidad 
utilizando el error de calibración esperado (ECE). El modelo alcanzó una precisión del 95,8 %, una sensibilidad
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del 96,2 % y una especificidad del 95,6 % en datos de prueba independientes, con un AUC-ROC de 0,993. La 
optimización del umbral identificó 0,560 como el límite de decisión óptimo, lo que dio lugar a una tasa de 
falsos negativos del 3,77 % y una tasa de falsos positivos del 4,44 %. La calibración de la probabilidad demostró 
predicciones fiables con un ECE de 0,0390, que mejoró a 0,0328 mediante regresión isotónica. El modelo 
clasificó correctamente 137 de las 143 muestras de prueba (86 negativos verdaderos, 51 positivos verdaderos, 
4 falsos positivos y 2 falsos negativos). El modelo de regresión logística demostró un fuerte rendimiento 
discriminatorio para la clasificación del cáncer de mama. Sin embargo, la validación de un solo entrenamiento 
y las características específicas del conjunto de datos requieren una interpretación cautelosa. La validación 
cruzada y la validación externa siguen siendo necesarias para la traslación clínica.

Palabras clave: Clasificación del Cáncer de Mama; Regresión Logística; Apoyo a la Toma de Decisiones Clínicas; 
Calibración de Probabilidades; Citología por Aspiración con Aguja Fina.

INTRODUCTION
Cancer represents one of the most formidable challenges in modern medicine, characterized by uncontrolled 

cellular proliferation and the potential for metastatic spread to distant organs. This group of diseases accounts 
for nearly 10 million deaths annually worldwide, with profound impacts on healthcare systems and patient 
quality of life. Different cancer types exhibit distinct biological behaviors, growth patterns, and clinical 
outcomes, ranging from indolent lesions requiring minimal intervention to aggressive malignancies demanding 
intensive multimodal therapy.

Among these malignancies, breast cancer continues to pose a significant challenge in modern oncology, 
ranking as the second leading cause of cancer-related mortality among women worldwide and affecting over 
2,3 million individuals annually.(1) The heterogeneous nature of breast malignancies, along with the critical 
importance of early detection for treatment efficacy and patient survival, highlights the essential need for 
accurate, reliable, and accessible diagnostic methodologies.(2,3) While traditional diagnostic approaches form 
the foundation of current clinical practice, they encounter inherent limitations in consistency, objectivity, 
and accessibility across diverse healthcare settings, particularly in resource-constrained environments where 
specialized expertise may be limited.(4)

The advent of digital pathology and computational analysis has fundamentally transformed the field of 
medical diagnostics, presenting unprecedented opportunities to enhance diagnostic accuracy through 
quantitative morphological assessment.(5,6) Fine needle aspiration cytology, a minimally invasive diagnostic 
procedure, produces extensive morphological data from cellular specimens, which can be systematically 
analyzed using advanced computational techniques.(7) Nevertheless, the interpretation of these morphological 
features has traditionally depended heavily on the expertise of pathologists, introducing potential variability 
in diagnostic consistency and creating obstacles to standardized care delivery.(8)

Cancer classification represents a fundamental supervised learning problem wherein computational 
algorithms learn to distinguish between malignant and benign lesions based on quantifiable features extracted 
from clinical specimens. Machine learning technologies have emerged as formidable tools for addressing this 
diagnostic challenge.(9,10) Recent advancements in artificial intelligence have yielded promising results in 
various oncological applications, ranging from radiological imaging interpretation to histopathological analysis, 
thereby suggesting significant opportunities for the development of clinical decision support systems.(11,12) 

Among classification algorithms, logistic regression occupies a distinctive position in clinical applications 
due to its interpretability, probabilistic output, and computational efficiency. Unlike black-box approaches, 
logistic regression provides transparent decision-making processes through interpretable coefficients, generates 
calibrated probability estimates rather than mere class labels, and requires minimal computational resources 
suitable for resource-constrained healthcare settings.

However, the clinical deployment of logistic regression for cancer classification necessitates careful attention 
to threshold optimization and probability calibration. Threshold optimization determines the decision boundary 
that balances sensitivity and specificity according to clinical priorities, while probability calibration ensures that 
predicted probabilities accurately reflect true malignancy risk. The integration of machine learning approaches 
with morphological feature analysis represents a convergent pathway toward more objective, consistent, and 
accessible diagnostic capabilities.(13)

Despite technological advancements, significant gaps remain in the clinical translation of machine learning 
diagnostic tools. Numerous existing studies predominantly focus on classification accuracy, often overlooking 
the probabilistic reliability, clinical interpretability, and threshold optimization requirements essential for 
practical clinical application.(14,15,16,17,18,19,20,21,22) The recognition that classification accuracy alone is insufficient 
for clinical applications emerged gradually through several decades of statistical and medical research. In the 
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1980s, researchers began documenting discrepancies between predicted probabilities and observed outcomes 
in logistic regression models applied to cardiovascular risk prediction.(23,24)

Contemporary machine learning research has witnessed renewed attention to calibration assessment, 
particularly as complex algorithms like deep neural networks often produce overconfident predictions despite 
high classification accuracy.(25,26) Modern frameworks now recognize calibration as essential for clinical decision 
support systems, where miscalibrated probabilities can lead to inappropriate treatment decisions regardless 
of discriminative performance.(27) The absence of comprehensive calibration assessment in diagnostic modeling 
can be a significant oversight, as clinical decision-making necessitates not only accurate classifications but also 
reliable confidence estimates that can be meaningfully interpreted as risk probabilities.(28,29,30)

Moreover, the predominant focus of machine learning methodologies in medical diagnosis is on algorithmic 
complexity rather than clinical interpretability. This results in the development of advanced models that, while 
achieving notable performance metrics, remain largely opaque to clinicians.(16,17) This lack of interpretability 
presents significant challenges to clinical adoption, as healthcare providers need to comprehend the underlying 
decision-making processes to effectively incorporate computational tools into existing diagnostic workflows.
(18,31) In contrast to complex algorithmic approaches, logistic regression offers intrinsic interpretability through 
transparent coefficient estimation and probabilistic reasoning, making it particularly suitable for clinical decision 
support applications. The interpretability of logistic regression extends beyond model coefficients to encompass 
two critical components emphasized in this study: threshold optimization and probability calibration.(32,33)

The Wisconsin Diagnostic Breast Cancer dataset represents a landmark resource in computational diagnostic 
research.(34,35) This dataset provides a comprehensive quantitative characterization of cellular morphological 
features derived from fine needle aspirate samples, facilitating a detailed analysis of the relationship between 
morphological patterns and diagnostic outcomes. This publicly available dataset comprises 569 digitized 
fine needle aspirate (FNA) samples from breast masses, with each sample characterized by 30 quantitative 
morphological features derived from digital image analysis of cell nuclei present in the aspirate specimens.

The objective of this study was to evaluate the clinical applicability of logistic regression for breast cancer 
classification using the Wisconsin Diagnostic Breast Cancer dataset. This evaluation specifically addresses the 
identified gaps in current machine learning diagnostic research: the absence of systematic threshold optimization 
methodologies that align decision boundaries with clinical priorities, the limited assessment of probability 
calibration quality that ensures reliable risk estimation, and the need for interpretable models that facilitate 
clinical adoption. By focusing on these underexplored aspects rather than solely on classification accuracy, 
this study contributes a methodological framework for translating machine learning models into clinically 
actionable diagnostic support tools. This systematic approach provides a methodological contribution that 
enhances the understanding of how machine learning models can be effectively evaluated and implemented in 
clinical diagnostic applications.

METHOD
This study represents a descriptive observational study with a retrospective cross-sectional design. No 

intervention was performed by the researchers; instead, we conducted secondary analysis of pre-existing data 
to develop and evaluate a diagnostic classification model. The study utilized previously collected morphological 
measurements to assess the discriminative performance, threshold optimization, and probability calibration of 
logistic regression for breast cancer classification.

This study employed the Wisconsin Diagnostic Breast Cancer (WDBC) dataset,(36) which consists of 569 
digitized fine-needle aspirate samples from breast masses. Each sample is characterized by 30 quantitative 
morphological features derived from cell nuclei measurements. These features are systematically categorized 
into three statistical aggregations: mean values, standard errors, and worst (largest) values for ten core 
morphological characteristics, namely radius, texture, perimeter, area, smoothness, compactness, concavity, 
concave points, symmetry, and fractal dimension.

The target variable pertains to the histopathological diagnosis, encoded as a binary classification wherein 
malignant cases are identified as positive instances (M=1) and benign cases as negative instances (B=0). The 
data preprocessing phase involved the removal of the patient identification variable to prevent data leakage 
and the application of label encoding transformation to convert categorical diagnoses into numerical format, 
utilizing scikit-learn’s LabelEncoder class. An analysis of missing values was conducted across all features, 
confirming complete data integrity with zero null values, thereby obviating the need for imputation strategies. 
The final dataset retained all 30 morphological features for subsequent analysis.

Due to the considerable variation in scale among morphological features, which range from fractional 
smoothness measurements to calculations involving areas of thousands of units, standardization was employed 
to ensure that each feature contributes equally to the logistic regression objective function. The StandardScaler 
transformation was applied in accordance with the following equation:

 3    Watrianthos R, et al

https://doi.org/10.56294/saludcyt20252241 ISSN: 2796-9711

https://doi.org/10.56294/saludcyt20252241


https://doi.org/10.56294/saludcyt20252241

𝓏𝓏𝔦𝔦𝔦𝔦 =
𝓍𝓍𝔦𝔦𝔦𝔦 − 𝜇𝜇𝔧𝔧
𝜎𝜎𝔧𝔧

 

 

𝒫𝒫(𝓎𝓎 = 1|𝑋𝑋) = 1
1 + ℯ𝛽𝛽∅+∑ 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝜌𝜌

𝑖𝑖=1
 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ 𝐵𝐵𝐵𝐵
𝑛𝑛

𝑀𝑀

𝑚𝑚=1
|𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵𝐵𝐵)| 

 

Where xij represents the original feature value, μj is the feature mean, σj is the feature standard deviation, 
and zij is the standardized value.

To mitigate the risk of data leakage, the scaler was exclusively fitted to the training data before being 
applied to both the training and testing datasets. The data was partitioned using a 75-25 train-test split, 
facilitated by scikit-learn’s train_test_split function with a random_state set to 0 to ensure reproducibility. This 
process resulted in 426 training samples and 143 testing samples.

Figure 1 illustrates that this division ensures an adequate amount of training data for model development 
while retaining sufficient samples for independent performance evaluation. Following partitioning, feature 
standardization was conducted, with the scaler being fitted exclusively to the training data and the transformation 
applied to both sets. This approach prevents information leakage that could potentially compromise the validity 
of the evaluation.

Figure 1. Research Flowchart

The model implementation employed logistic regression with the L-BFGS solver and L2 regularization, 
utilizing default parameters.(37,38) During the training phase, the model was fitted to standardized training 
data to determine optimal feature coefficients for binary classification, with the capability of predicting 
probabilities. The use of scikit-learn’s LogisticRegression class with default parameters is indicative of standard 
practice in clinical machine learning applications.

The logistic regression model calculates the probability of malignancy by employing the sigmoid function, 
which transforms linear combinations of standardized features into probability values ranging from zero to one. 
Given that the WDBC dataset contains 30 morphological features (as described above), the model computes 
the following relationship:
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Where β∅ represents the intercept term, βi denotes individual feature coefficients for each of the 30 
morphological features, xi indicates the corresponding standardized feature values, and ρ equals the total 
number of features (30 in this study). This probabilistic framework enables not only binary classification 
decisions but also confidence quantification for clinical risk assessment.

Performance Evaluation and ROC Analysis
The assessment of model performance utilized a comprehensive evaluation framework tailored to meet 

the clinical demands of diagnostic support systems. The evaluation focused on confusion matrix analysis, 
addressing both sensitivity to malignant cases and specificity for benign classifications. The elements of the 
confusion matrix (True Negatives, False Positives, False Negatives, True Positives) facilitated the computation 
of standard binary classification metrics.

Receiver Operating Characteristic (ROC) analysis offers a threshold-independent evaluation of performance, 
which is crucial for comprehending model behavior across various clinical decision-making contexts.(39) The ROC 
curve, constructed by plotting the True Positive Rate against the False Positive Rate across different probability 
thresholds, facilitates the assessment of discriminative ability independent of specific cutoff values.(40)

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) serves as a quantitative measure 
of overall discriminative performance, with values ranging from 0,5, indicating random classification, to 1,0, 
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signifying perfect discrimination. This metric offers a singular summary statistic for the comparison of model 
performance and the assessment of clinical utility.

Probability Calibration Assessment
The assessment of model calibration is crucial for ensuring the provision of reliable probability estimates 

in clinical decision support systems. Accurately calibrated probabilities allow for the interpretation of model 
confidence as true risk estimates. The quality of calibration is quantified using the Expected Calibration Error 
(ECE),(41) which measures the average difference between predicted probabilities and actual outcomes across 
probability bins:

𝓏𝓏𝔦𝔦𝔦𝔦 =
𝓍𝓍𝔦𝔦𝔦𝔦 − 𝜇𝜇𝔧𝔧
𝜎𝜎𝔧𝔧
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1 + ℯ𝛽𝛽∅+∑ 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝜌𝜌

𝑖𝑖=1
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Where Bm represents samples in bin m, acc(Bm)denotes the accuracy within the bin, conf(Bm) indicates the 

average confidence, and n represents the total sample count. ECE values below 0,05 generally indicate well-
calibrated models suitable for clinical applications.

Techniques for improving calibration, such as Platt scaling and isotonic regression,(42,43) were assessed to 
enhance the reliability of probability estimates for clinical decision support systems. Platt scaling utilizes a 
sigmoid transformation of model outputs, whereas isotonic regression employs a non-parametric monotonic 
transformation to improve calibration while maintaining the ranking order.

Ethical Considerations
This study utilized the Wisconsin Diagnostic Breast Cancer dataset, which is publicly available through the 

University of California Irvine Machine Learning Repository for research and educational purposes. The original 
data collection at the University of Wisconsin Clinical Sciences Center (1989-1991) was conducted under 
appropriate institutional review and informed consent procedures as documented in the original publications.
(44,45) 

The dataset contains fully de-identified, anonymized patient information with no personal identifiers, 
demographic data, or any information that could be used to re-identify individuals. Patient identification 
numbers were removed from the dataset prior to public release. The secondary analysis of this de-identified, 
publicly available dataset does not constitute human subjects research as defined by international ethical 
guidelines (Declaration of Helsinki) and institutional review board standards.

As this study involved only computational analysis of pre-existing, de-identified, publicly available data 
without any patient contact, recruitment, or intervention, formal institutional review board approval was 
not required according to the regulations governing secondary data analysis at our institution. Nevertheless, 
we adhered to principles of responsible research conduct, including transparent reporting of methodological 
procedures, acknowledgment of data sources, and commitment to reproducible science.

Limitations of Secondary Data Analysis
This study utilized the Wisconsin Diagnostic Breast Cancer dataset, which is publicl As a secondary analysis 

of pre-existing data, this study inherits limitations from the original data collection procedures, including 
potential selection bias in the patient population, temporal constraints (data collected 1989-1991 may not 
reflect current clinical populations), and lack of control over feature extraction protocols. The geographic 
restriction to a single institution (University of Wisconsin) may limit generalizability to diverse clinical settings 
and patient populations.

RESULTS
The Wisconsin Diagnostic Breast Cancer dataset consists of 569 samples, all of which exhibit complete data 

integrity, with no missing values across the 30 morphological features. The distribution of the target variable 
indicates 357 benign cases (62,7 %) and 212 malignant cases (37,3 %), reflecting a moderate class imbalance 
with a benign-to-malignant ratio of 1,68:1. Following a 75-25 train-test split, the training set comprises 426 
samples, while the test set includes 143 samples, maintaining similar class distributions.

The logistic regression model demonstrated an overall accuracy of 95,8 % on the independent test set, 
correctly predicting 137 out of 143 total samples. The analysis of the confusion matrix revealed 86 true 
negatives, 4 false positives, 2 false negatives, and 51 true positives (table 1). 
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Table 1. Confusion Matrix and Primary Performance Metrics

Metric Value Clinical Interpretation

True Negatives (TN) 86 Benign cases correctly identified

False Positives (FP) 4 Benign cases misclassified as malignant

False Negatives (FN) 2 Malignant cases misclassified as benign

True Positives (TP) 51 Malignant cases correctly identified

Sensitivity (Recall) 96,2 % Proportion of malignant cases detected

Specificity 95,6 % Proportion of benign cases correctly identified

Precision (PPV) 92,7 % Accuracy of malignant predictions

F1-Score 0,944 Harmonic mean of precision and recall

Accuracy 95,8 % Overall classification correctness

Figure 2 presents a heatmap of the confusion matrix, with the majority of predictions concentrated along 
the diagonal, indicating accurate classifications. The visualization displays the distribution of true negatives 
(86), false positives (4), false negatives (2), and true positives (51), with darker blue shades representing higher 
counts. The matrix evidences strong performance, as most predictions are concentrated along the diagonal.

Figure 2. Confusion Matrix
 Note: the matrix displays classification results on the independent test set (n=143 samples) using logistic regression with 

default threshold (0,5)

ROC Analysis and Threshold Optimization
The Receiver Operating Characteristic (ROC) analysis yielded an Area Under the Curve (AUC-ROC) of 0,993, 

indicating an almost perfect capacity to differentiate between malignant and benign cases. The ROC curve 
demonstrated a rapid ascent towards the upper-left corner, with minimal false positive rates across most 
sensitivity levels. Figure 3 presents the ROC curve alongside the sensitivity-specificity trade-off analysis, 
illustrating the model’s exceptional discriminative performance and the relationship between sensitivity and 
specificity across various probability thresholds.

The left panel illustrates the Receiver Operating Characteristic (ROC) curve with an Area Under the Curve 
(AUC) of 0,993, indicating a near-perfect ability to discriminate between malignant and benign cases. The 
curve’s rapid ascent towards the upper-left corner signifies excellent performance across all thresholds. The 
right panel presents the trade-off between sensitivity and specificity across various probability thresholds, 
demonstrating how these metrics fluctuate as the decision boundary is adjusted.
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Figure 3. Receiver Operating Characteristic (ROC) Curve
Note: ROC curve generated from predicted probabilities on the test set (n=143 samples). The diagonal dashed line 

represents random classification (AUC=0,5)

Figure 4. ROC Curve with Optimal Threshold Points
Note: optimal thresholds identified using Youden’s Index (maximizing J = Sensitivity + Specificity - 1), minimum distance 

to perfect classification point (0,1), and default threshold (0,5). Test set, n=143 samples.

Threshold optimization utilizing Youden’s Index determined the optimal decision boundary at 0,560, 
effectively balancing sensitivity and specificity for clinical decision-making. At this threshold, the model 
achieved a sensitivity of 96,2 % and a specificity of 95,6 %. Figure 4 illustrates the ROC curve, highlighting the 
optimal threshold points, including Youden’s optimal (0,560), distance optimal (0,560), and default (0,500) 
thresholds, thereby demonstrating the convergence of multiple optimization criteria at similar threshold values. 

Table 2 presents the comprehensive evaluative analysis of the developed logistic regression model, elucidating 
the diagnostic dynamics that arise with systematic modifications to the decision threshold. This table examines 
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the model’s performance across various threshold values, ranging from 0,3 to 0,7, including the optimal point 
determined through the Youden index and the minimum distance approach to the ideal ROC point.

Table 2. Performance Across Multiple Decision Thresholds

Threshold Sensitivity Specificity Precision F1-Score Accuracy FN FP

0,300 96,2 % 92,2 % 87,9 % 91,9 % 93,7 % 2 7

0,400 96,2 % 93,3 % 89,5 % 92,7 % 94,4 % 2 6

0,500 96,2 % 95,6 % 92,7 % 94,4 % 95,8 % 2 4

0,560 96,2 % 95,6 % 92,7 % 94,4 % 95,8 % 2 4

0,600 92,5 % 96,7 % 94,2 % 93,3 % 95,1 % 4 3

0,700 90,6 % 100,0 % 100,0 % 95,0 % 96,5 % 5 0

Note: performance metrics calculated across six probability thresholds using the test 
set (n=143 samples: 53 malignant, 90 benign). FN = False Negatives; FP = False Positives

At lower threshold values, such as 0,3, the sensitivity of the test reaches a peak of 96,2 %, although this 
comes at the cost of a significant reduction in specificity, leading to an increased rate of false positives. This 
configuration is advantageous in preliminary screening settings where the priority is on early detection rather 
than precise accuracy. In contrast, employing a higher threshold, such as 0,7, results in perfect specificity at 
100 %, but this is accompanied by a marked decline in sensitivity, thereby increasing the likelihood of false 
negatives. Such an approach poses a risk in clinical environments, as it may result in the failure to identify 
actual cancer cases.

The optimal threshold, approximately 0,56, achieves a balance between sensitivity and specificity, 
consistently yielding a high F1-score and accuracy. This threshold mathematically maximizes the Youden index 
(J = Sensitivity + Specificity – 1), a metric frequently employed in epidemiology to ascertain the ideal diagnostic 
cut-off. Clinically, this table demonstrates that the selection of a threshold is not solely a technical decision 
but also an ethical and contextual one. For instance, hospitals with limited resources might opt for a more 
conservative threshold to alleviate the burden of follow-up examinations, whereas national screening centers 
might adopt a more aggressive threshold to minimize the risk of false negatives.

Probability Calibration Analysis
The evaluation of model calibration demonstrated a Brier Score of 0,0298 and an Expected Calibration Error 

(ECE) of 0,0390. The calibration plot displayed the relationship between predicted probabilities and observed 
outcomes across probability bins. The distribution of predicted probabilities showed that benign cases had 
predicted probabilities predominantly in the 0,0-0,1 range, while malignant cases had predicted probabilities 
concentrated in the 0,9-1,0 range. Few samples exhibited predicted probabilities in the intermediate range of 
0,3-0,7.

Figure 5. Calibration Characteristics
Note: Left panel: reliability diagram comparing predicted probabilities (x-axis) with observed frequencies (y-axis) on test 
set. Middle panel: distribution of predicted probabilities by true class. Right panel: comparison of calibration methods. 

Test set, n=143 samples

Figure 5 presents the principal calibration characteristics, emphasizing the reliability diagram that contrasts 
predicted with actual outcomes, the probability distribution patterns across classes, and the comparative 
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efficacy of various calibration methods. Techniques aimed at enhancing calibration demonstrated modest yet 
significant improvements in probability reliability.

Table 3. Calibration Metrics and Improvement Methods

Calibration Method Brier Score Expected Calibration Error Assessment

Original Model 0,0298 0,0390 Well calibrated

Platt Scaling 0,0296 0,0378 Slight improvement

Isotonic Regression 0,0287 0,0328 Best calibration

Note: calibration metrics computed on test set (n=143 samples) for the original logistic 
regression model and two post-hoc calibration methods

As shown in table 3, isotonic regression emerged as the most effective calibration method, reducing the 
Expected Calibration Error from 0,0390 to 0,0328 and enhancing the Brier Score from 0,0298 to 0,0287. This 
non-parametric approach provided superior calibration enhancement compared to Platt scaling, which achieved 
a more limited improvement, reducing the ECE to 0,0378.

DISCUSSION
The logistic regression model exhibited performance metrics that surpass conventional benchmarks for 

medical diagnostic systems. Optimal threshold analysis underscores the significance of balancing sensitivity and 
specificity in accordance with clinical priorities. The optimal Youden Index threshold of 0,560 offers an ideal 
mathematical equilibrium; however, clinical implementation necessitates consideration of the relative costs 
associated with false negatives and false positives. In the context of cancer screening, the clinical repercussions 
of failing to detect cancer generally surpass the costs of unnecessary follow-up procedures. Threshold analysis 
indicates that reducing the decision threshold to 0,400 preserves the same sensitivity while offering a more 
suitable clinical compromise. Conversely, a threshold of 0,700 achieves perfect specificity but results in five 
undetected cancer cases, which may be deemed clinically unacceptable.

The robust calibration performance significantly enhances the clinical applicability of the model by delivering 
reliable probability estimates for risk stratification. An Expected Calibration Error below 0,05 suggests that 
the predicted probabilities can be interpreted as actual risk estimates, thereby facilitating more nuanced 
clinical decision-making beyond binary classification. This calibration quality compares favorably with existing 
literature on breast cancer classification systems. A systematic review by Dhanya et al.(46) examining machine 
learning approaches for breast cancer diagnosis using the WDBC dataset reported that most studies achieved 
classification accuracies between 93-97 %, similar to our 95,8 %, but fewer than 15 % of reviewed studies 
assessed probability calibration. Among those that did evaluate calibration, ECE values ranged from 0,042 to 
0,089 for logistic regression models, indicating that our ECE of 0,0390 represents above-average calibration 
quality.(47,48,49)

The calibration improvement achieved through isotonic regression, although modest, underscores the 
value of post-processing techniques in enhancing probability reliability. Well-calibrated probabilities allow 
for integration with existing clinical risk assessment frameworks and support personalized patient counseling 
regarding malignancy risk. The calibration improvement achieved through isotonic regression in our study 
(ECE reduced from 0,0390 to 0,0328) aligns with findings from Bella et al.(50), who demonstrated that isotonic 
regression consistently outperforms Platt scaling for logistic regression calibration in medical datasets. 
However, our improvement magnitude (15,9 % ECE reduction) is more modest than the 23-35 % reductions 
reported by a study for imbalanced datasets, possibly reflecting that our original model was already reasonably 
well-calibrated.

Our findings contribute to the growing evidence base supporting interpretable, calibrated models for clinical 
deployment, as advocated by Christodoulou et al.(51), who found no performance advantage for complex machine 
learning methods over logistic regression in clinical prediction tasks when considering both discrimination and 
calibration. The systematic threshold optimization at 0,560 identified in our study provides actionable guidance 
for clinical implementation, contrasting with studies that report only default threshold (0,5) performance 
without exploring sensitivity-specificity trade-offs relevant to screening versus diagnostic contexts.(49,52)

Methodological Considerations, Limitation, and Implications for Clinical Decision
Such exceptional performance metrics may suggest potential overfitting to the specific characteristics of 

the Wisconsin dataset. Although the single train-test validation approach is computationally efficient, it offers 
limited evidence regarding the model’s robustness across diverse patient cohorts. The lack of cross-validation 
methodology hinders the assessment of performance consistency and the statistical significance of the reported 
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metrics. The Wisconsin Diagnostic Breast Cancer dataset, although extensively utilized in machine learning 
research, constitutes a curated academic dataset that may not entirely reflect the complexity and variability 
encountered in routine clinical practice. The systematic categorization of features into mean, standard error, 
and worst value categories, while methodologically robust, may introduce systematic patterns that enhance 
classification performance but potentially limit generalizability to real-world clinical scenarios.

The performance characteristics indicate potential utility as a diagnostic support tool, particularly in screening 
applications where high sensitivity is prioritized. However, several factors constrain its immediate readiness 
for clinical implementation. The exceptional performance metrics necessitate validation on independent 
clinical datasets from diverse institutions and patient populations to establish generalizability. Furthermore, 
the absence of feature importance analysis limits clinical interpretability and hinders the identification of the 
most diagnostically relevant morphological characteristics.

Study Limitations and Future Research Directions
The principal limitation of this study is the reliance on a single train-test validation approach, which fails to 

provide adequate evidence for statistical significance and performance stability. Although the Wisconsin dataset 
is well-established for research purposes, it may not fully represent the diverse range of cases encountered 
in various clinical settings. Furthermore, the absence of hyperparameter optimization suggests that the 
performance may not reflect the optimal configuration for this specific dataset and task. Additionally, the lack 
of comparison with alternative algorithms restricts the understanding of relative performance advantages and 
does not offer a baseline for performance assessment.

While the exceptional performance metrics are promising, they necessitate a critical evaluation and 
substantial further validation prior to consideration for clinical deployment. Despite these limitations, the 
systematic approach to threshold optimization and probability calibration exhibits methodological sophistication 
suitable for clinical applications and establishes a foundation for future validation studies with more rigorous 
experimental designs.

To validate these findings, it is essential to employ rigorous cross-validation methodologies, conduct external 
validation using independent clinical datasets, and compare the results with established diagnostic tools and 
alternative machine learning approaches. Conducting a feature importance analysis would enhance clinical 
interpretability by identifying the most diagnostically relevant morphological characteristics among the 30 
available features. The integration of ensemble methods or more sophisticated algorithms could facilitate 
performance benchmarking and potentially enhance robustness. Developing clinical decision support interfaces 
that incorporate probability estimates into existing diagnostic workflows represents a logical progression for 
translating these research findings into practical clinical applications.

CONCLUSIONS 
This study addressed its objective of evaluating the clinical applicability of logistic regression for breast 

cancer classification by demonstrating that interpretable machine learning models can achieve clinically 
relevant performance when appropriately optimized and calibrated. The systematic evaluation framework 
encompassing threshold optimization and probability calibration assessment provides evidence that logistic 
regression represents a viable approach for clinical decision support in breast cancer diagnosis, particularly in 
settings where model interpretability and computational efficiency are priorities.

The principal conclusion of this study is that optimizing thresholds using clinically meaningful metrics 
enables classification decisions to align with institutional priorities concerning the balance between sensitivity 
and specificity. Additionally, the assessment and refinement of probability calibration techniques ensure that 
model outputs can be interpreted reliably as estimates of actual risk, rather than arbitrary confidence scores. 
Furthermore, a comprehensive model evaluation that encompasses discrimination, calibration, and threshold 
selection offers a more robust foundation for clinical application than traditional assessments that primarily 
focus on accuracy.

However, important limitations constrain immediate clinical implementation. The reliance on single train-
test validation without rigorous cross-validation or external validation limits confidence in performance 
generalizability across diverse patient populations and clinical settings. The Wisconsin dataset, while 
methodologically valuable as a research benchmark, represents a curated collection from a single institution 
during a specific time period and may not fully reflect the morphological variability encountered in contemporary 
clinical practice. Dataset-specific optimization may contribute to the observed performance levels, necessitating 
cautious interpretation and mandatory validation on independent clinical cohorts before deployment.

Future research priorities include external validation using multi-institutional datasets representing diverse 
patient demographics and imaging protocols, implementation of rigorous cross-validation methodologies to 
establish statistical confidence in performance estimates, prospective clinical evaluation comparing model-
assisted diagnosis against standard clinical workflows, and investigation of model performance across patient 
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subgroups to assess potential disparities. Additionally, development of clinical decision support interfaces that 
effectively communicate probability estimates and threshold-dependent trade-offs to clinicians represents an 
essential step toward translating research findings into practical diagnostic tools.
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