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ABSTRACT

Introduction: radiogenomics, which combines medical imaging data with genomic profiling, has emerged as 
a key tool in precision oncology. This noninvasive approach improves the diagnosis and prognosis of tumors 
such as lung, rectal, glioma, and breast cancer. 
Objective: a systematic review (PRISMA 2020) was conducted of studies published between 2020 and 2025, 
extracted from PubMed, Scopus, Web of Science, ScienceDirect, and the Cochrane Library. Of 670 articles 
found, 21 met the inclusion criteria. 
Method: this was a systematic review following the PRISMA 2020 guidelines. Original studies, reviews, and 
meta-analyses published in English or Spanish were included. Searches were conducted in PubMed, Scopus, 
Web of Science, ScienceDirect, and the Cochrane Library. 
Results: of a total of 670 articles retrieved, 21 met the inclusion criteria. Most studies demonstrated a high 
predictive capacity of radiogenomic models to identify mutations such as EGFR and KRAS. 
Conclusions: this study underscores the need to establish multicenter protocols and robust validations to 
ensure their clinical applicability and consolidate their role in personalized medicine.

Keywords: Radiogenomics; Image Interpretation; Magnetic Resonance Imaging; Precision Medicine; 
Biomarkers; Tumor; Artificial Intelligence; Oncology.

RESUMEN

Introducción: la radiogenómica, que combina datos de imagen médica con perfiles genómicos, se ha 
posicionado como herramienta clave en oncología de precisión. Este enfoque no invasivo mejora el diagnóstico 
y pronóstico de tumores como cáncer de pulmón, recto, gliomas y mama. 
Objetivo: se realizó una revisión sistemática (PRISMA 2020) de estudios publicados entre 2020 y 2025, extraídos 
de PubMed, Scopus, Web of Science, ScienceDirect y Cochrane Library. De 670 artículos encontrados, 21 
cumplieron los criterios de inclusión. 
Método: se trata de una revisión sistemática siguiendo la guía PRISMA 2020. Se incluyeron estudios originales, 
revisiones y metaanálisis publicados en inglés o español. Las búsquedas se realizaron en PubMed, Scopus, 
Web of Science, ScienceDirect y Cochrane Library.  
Resultados: de un total de 670 artículos recuperados, 21 cumplieron con los criterios de inclusión. La mayoría 
de los estudios demostraron una alta capacidad predictiva de modelos radiogenómicos para identificar 
mutaciones como EGFR y KRAS.  
Conclusiones: este estudio subraya la necesidad de establecer protocolos multicéntricos y validaciones 
robustas para garantizar su aplicabilidad clínica y consolidar su rol en la medicina personalizada.
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INTRODUCTION
In the era of precision medicine, radiogenomics is emerging as a strategic tool in oncology, as it relates 

quantitative characteristics obtained from medical images to genomic profiles of the tumor. This approach 
allows for the description of intratumoral heterogeneity and the anticipation of molecular alterations, favoring 
the development of diagnostic and prognostic models with remarkable predictive power.(1,2) An example of 
this is the integration of tomography, resonance, and PET/CT data to predict mutations in genes such as 
EGFR, TP53, or KRAS, with areas under the curve (AUC) close to 0,80–0,90, supported by artificial intelligence 
techniques that increase prognostic stratification capacity.(3,4,5)

Despite these advances, the challenge of ensuring the reproducibility and clinical application of the models 
remains. Several reviews have pointed to wide methodological variability, ranging from image acquisition 
protocols to segmentation and feature selection.(6) Although there are validated models in neoplasms such as 
lung cancer or glioblastoma, few meet the criteria for multicenter standardization and reporting guidelines 
such as the Radiomics Quality Score (RQS), which aims to evaluate the methodological quality of radiomics and 
radiogenomics studies, or the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD), which establishes guidelines for the development and validation of predictive models.(7,8)

In this scenario, a gap becomes apparent: most previous reviews have focused on technical aspects or 
specific tumors, but there is a lack of an updated analysis that integrates the diagnostic and prognostic 
performance of recently published radiogenomic models, together with practical recommendations for their 
clinical standardization. This absence limits the possibility of translating the findings into medical practice.

The purpose of this article is precisely to critically review the evidence published between 2020 and 2025 
on radiogenomic models in oncology, synthesize the findings in terms of diagnostic and prognostic performance, 
and propose technical recommendations that strengthen the reproducibility and clinical applicability of this 
approach. The aim is to contribute to the establishment of standardized protocols and to encourage collaborative 
research that promotes the integration of radiogenomics into personalized medicine.

METHOD
This study is a systematic review of the literature, developed in accordance with the PRISMA 2020 guidelines. 

Although international methodological guidelines were followed, the review could not be registered in 
PROSPERO, as this platform only accepts reviews with direct clinical outcomes in patients or animals, and the 
present study focuses on predictive radiogenomics models based on imaging and genomic data. The objective 
was to identify, evaluate, and synthesize the available scientific evidence on the integration of radiogenomics 
in personalized medicine-oriented oncology.

Inclusion and exclusion criteria
Original research articles published in English or Spanish between January 2020 and April 2025 were included, 

which evaluated the correlation between quantitative radiological characteristics and genomic profiles in 
cancer patients, as well as their application in diagnosis, prognosis, or prediction of therapeutic response. Case 
studies, conference abstracts, editorials, letters to the editor, narrative reviews, and systematic reviews were 
excluded, as the focus was on synthesizing primary evidence.

Sources of information and search strategy
The literature search was conducted between April and May 2025 in the PubMed, Scopus, Web of Science, 

and ScienceDirect databases. MeSH terms and related keywords were used, combined with Boolean operators. 
The complete search strategy was: (“radiogenomics” OR “radiogenomics” OR “radiogenómica” OR “radiomics” 
OR “radiómica”) AND (“oncology” OR “oncology” OR “oncología” OR “cancer” OR “tumor” OR “neoplasms”) AND 
(“personalized medicine” OR “precision medicine” OR “personalized medicine”) AND (“imaging” OR “medical 
imaging” OR “CT” OR “MRI” OR “PET”) AND (“genomics” OR “genómica” OR “mutation” OR “genetic profile”) 
AND (“machine learning” OR “deep learning” OR “artificial intelligence”). In addition, the reference lists of the 
selected articles were reviewed to identify relevant studies not retrieved in the initial search.

Study selection
The results were exported to Zotero, and duplicates were removed. The selection was carried out in two 

phases: reading of titles and abstracts by two independent reviewers, followed by full-text evaluation of 
potentially eligible studies. Discrepancies were resolved by consensus among the authors. Agreement between 
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reviewers was estimated using the Kappa coefficient.

Data extraction and synthesis
A standardized template was designed for data extraction, which included: author(s), year, country, type of 

cancer evaluated, sample size, imaging technique used, radiogenomic analysis methodology, software or tools 
applied, performance metrics (AUC, accuracy, sensitivity, specificity), main findings, reported clinical utility, 
and limitations.

The synthesis was performed in a structured narrative format, organizing the results around three axes: (i) 
diagnostic performance of radiogenomic models, (ii) prognostic and predictive value in therapeutic response, 
and (iii) methodological and technical aspects that condition their reproducibility.

Methodological quality assessment
The quality of the prediction model studies was assessed using the TRIPOD guideline, currently considered 

the standard for reporting and evaluating diagnostic and prognostic predictive models, and the ROBIS tool was 
used for previous systematic reviews.

A literature review was conducted following the predefined search strategy, and 21 articles were included. 
Screening was performed independently by two reviewers in two phases (title/abstract and full text) using a 
standardized form. Inter-rater agreement was quantified using Cohen’s Kappa statistic, showing substantial 
agreement in the title/abstract phase and almost perfect agreement in the full-text reading, according to 
the Landis and Koch classification. Discrepancies were resolved by consensus, and when they persisted, by 
the opinion of a third, independent reviewer, although this was not necessary. Table 1 summarizes the records 
retrieved by the database and their refinement, table 2 shows the records after applying the inclusion and 
exclusion criteria, and the PRISMA 2020 diagram documents the complete selection flow.

Figure 1. PRISMA study selection flow diagram
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RESULTS
The search in five databases, from 2020 to 2025, retrieved 670 records. PubMed 120; Scopus 200; Web 

of Science 180; ScienceDirect 150; Cochrane 20. After removing 250 duplicates, 420 records were screened 
for title and abstract, of which 354 were excluded for not meeting the eligibility criteria. Sixty-six articles 
were evaluated in full text, and 45 were excluded for the following reasons: absence of radiomics–genomics 
integration (n=14), ineligible design (letters, editorials, or case series; n=11), non-oncological population (n=8), 
insufficient data or methodology (n=8), and overlap of cohorts (n=4). Consequently, 21 studies met the criteria 
and were included in the qualitative synthesis. The complete flow is shown in the PRISMA 2020 diagram (figure 
1), and the reasons for full-text exclusion are detailed in table 2.

Table 1. Search strategy

Database Documents 
retrieved

Duplicates 
removed

Unique 
records after 
deduplication

Excluded in 
screening (title/

abstract)

Evaluated 
in full text

Included Excluded at 
full text

PubMed 120 28 92 77 15 6 9

Scopus 200 90 110 85 25 7 18

Web of Science 180 80 100 87 13 3 10

ScienceDirect 150 50 100 91 9 3 6

C o c h r a n e 
Library

20 2 18 14 4 2 2

TOTAL 670 250 420 354 66 21 45

Table 2 . Reasons for exclusion from full text (n=45)

Reason for exclusion n Operational criterion

Non-oncological population 8 Series on non-tumor pathology or animal models 
without clear translation to cancer.

Ineligible design (cases/letters/editorials) 11 Opinions, letters, case series without comparison/
validation.

No explicit radiomics–genomics correlation 14 Radiomics-only or genomics-only studies without 
operational integration.

Insufficient data (incomplete metrics or 
methods)

8 No AUC/accuracy/CI; incomplete or irreproducible 
pipeline.

Duplicate cohort/overlap. 4 Same population reused without additional 
relevant analysis.

Total 4

DISCUSSION
The results point to tangible clinical potential when the questions are clearly established, for example, 

inference of mutations or prognostic stratification in specific scenarios, and when working with well-curated 
datasets. The heterogeneity of designs, analytical pipelines, and methodological reports conditions the 
comparability and robustness of the conclusions.(9,10,11)

When examining studies by tumor location and imaging modality, a relatively consistent pattern is observed 
in lung cancer: CT-based models, with or without PET/CT, aimed at predicting point mutations and stratifying 
risk tend to report moderate to high performance. In neuro-oncology, multiparametric magnetic resonance 
imaging approaches have proven helpful for molecular classification and have shown more variable results 
when the objective is purely prognostic. In other, more common tumors such as breast, liver, and head and 
neck, the signal is more heterogeneous. There are reports with acceptable discriminatory capacity in specific 
tasks; however, the frequency of external validations is lower, and the dispersion of metrics is greater. The most 
commonly reported performance measures have been area under the curve (AUC), accuracy, and sensitivity/
specificity.(1,2,3,15)

A cross-sectional reading of these metrics suggests that performance improves when radiogenomic descriptors 
are combined with simple, easily accessible clinical variables such as age, stage, or treatment, as opposed to 
the image alone. Even so, the inter-study variation resulting from preprocessing, segmentation, selection, and 
stability of functions and validation strategies currently prevents us from affirming the consistent superiority of 
one technique or modality over another beyond specific examinations, such as chest CT for epidermal growth 
receptor or multiparametric MRI for molecular signatures in gliomas.(16,17)

Clinical extrapolation remains very limited. The area under the curve is high, but these values cannot be 
sustained without calibration or external validation, whether geographical or temporal. According to RQS, 
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segmentation and clinical justification are usually well described, but external validation, stability testing, 
impact/cost assessment, and code/data availability are lacking. With TRIPOD, there are repeated gaps in sample 
size, missing data, calibration, and reclassification, and little reporting of temporal/geographic validations. 
In PROBAST, biases due to participant selection, non-standardized predictors (equipment dependence), and 
analyses with risk of overfitting predominate.(10) Where there was harmonization and standardization of image 
flow and functions, performance was more stable; when calibration was lacking and there was only internal 
validation, high metrics with little generalization appeared. This is in line with already known barriers: small 
samples, heterogeneity of pipelines, lack of pre-registration, and lack of reproducible code.

In practice, radiogenomics complements, but does not replace, biopsy: it helps prioritize molecular testing, 
anticipate alterations, and stratify treatment. To move forward, it is necessary to standardize the acquisition/
extraction of results, continue using TRIPOD, evaluate bias with PROBAST, and incorporate external validation, 
calibration, and clinical utility.(11,12) In addition, code and functionality dictionaries should be shared and 
harmonization applied in order to improve reproducibility. Its clinical adoption requires multicenter validation, 
explicit calibration, pipeline harmonization, and transparent reporting.

Sourse: information obtained from He et al.(14)

Figure 2. Schematic diagram illustrating the integration of radiomics with omics data for precision cancer care

The first step is to collect data, including images and biological samples. From these resources, various 
dimensions of radiomic characteristics and molecular signatures of cancers are extracted and refined. Finally, 
radiomic and omic data are interconnected and integrated using advanced artificial intelligence algorithms to 
build accurate clinical prediction models.

Beyond its diagnostic potential, radiogenomics allows the construction of spatial and contextual maps 
that relate tumor biology to its microenvironment, opening up new perspectives for more precise therapeutic 
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interventions. In line with this, radiomics enables the extraction of quantitative information from medical 
images and the linking of this information to molecular profiles, thereby improving diagnosis and personalized 
medicine. These advanced techniques transform images into clinically relevant data, optimizing tumor 
characterization, therapeutic prediction, and the monitoring of oncological diseases without the need for 
invasive interventions.(18) 

Despite all the benefits, its large-scale implementation in clinical practice still requires overcoming barriers 
related to system interoperability and external validation of the models developed, among other challenges, 
such as the need for standardization in the acquisition and processing of medical images, since technical 
variability between equipment and protocols can affect the reproducibility of findings.(13) Likewise, the 
validation of predictive models in diverse populations and heterogeneous clinical contexts is essential to ensure 
their universal applicability and avoid biases that limit their use. From an ethical perspective, dilemmas arise 
regarding the privacy of biomedical data and the protection of patients’ genetic identities, especially when 
large-scale image and genomic information databases are integrated. The adoption of advanced technologies 
poses the risk of deepening inequalities in access to personalized health services, which requires clear policies 
to ensure equity and distributive justice in their implementation.(14,19,20,21)

Table 3. Review articles
Article name Publication date and 

authors
Methodology and objective Conclusions and recommendations

The era of 
radiogenomics in 
precision medicine: 
an emerging 
approach to support 
diagnosis, treatment 
decisions, and 
p r o g n o s t i c a t i o n 
in oncology

2020 - Shui et al.(1) Developed using a narrative approach 
with the aim of synthesizing the 
integration of radiomic and genomic 
data in the context of precision oncology. 
The methodology included the 
collection and preprocessing of 
medical images and molecular 
profiles, the segmentation of 
tumor regions, and the extraction 
of quantitative features through 
radiomics techniques. Subsequently, 
machine learning algorithms were 
applied to construct predictive 
models for diagnosis, prognosis, and 
personalized therapeutic selection. 

Radiogenomics is positioned as an 
inevitable consequence of precision 
medicine, offering significant advantages 
over conventional methods, such as cost 
reduction, access to comprehensive 
tumor information beyond the limitations 
of biopsies, and higher spatial resolution 
to capture tumor heterogeneity.
The automated generation of 
quantitative data from medical images, 
combined with clinical and genomic 
profiles in open databases, consolidates 
radiogenomics as a solid link between 
tumor phenotype and genotype, 
facilitating the creation of predictive and 
prognostic models with clinical potential.

Radiogenomics in 
rectal cancer: an 
emerging approach 
for personalized 
m e d i c i n e . 

2023 - O’Sullivan et al.(15) Study developed through a 
systematic review based on the 
PRISMA 2020 guidelines, with the 
aim of analyzing contemporary 
applications of radiogenomics in 
the management of rectal cancer. 
The methodology included a structured 
search of scientific databases. 

Radiogenomics shows high potential 
in predicting therapeutic response in 
rectal cancer by combining structural 
image information with molecular 
characteristics of the tumor. This 
integration allows for improved 
patient stratification and optimized 
clinical decisions, such as the selection 
of neoadjuvant therapies or the 
identification of candidates for less 
invasive treatments. However, its 
clinical applicability is limited by 
the lack of external validation of 
existing models and methodological 
heterogeneity between studies.
The promise of radiogenomics as 
a non-invasive tool, which can be 
considered a “virtual biopsy,” requires 
overcoming significant challenges 
related to workflow standardization , 
inter-institutional reproducibility, and 
data quality. The absence of uniform 
protocols for image acquisition and 
tumor segmentation compromises the 
comparability of results, highlighting 
the need for collaborative, multicenter 
initiatives to strengthen the evidence 
base and facilitate its incorporation 
into routine oncology practice.
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PET radiogenomics 
and imaging 
phenotypes: current 
knowledge and 
future perspectives 
in cancer diagnosis

2025 - Filippi et al.(4) The study was designed as a 
systematic review, developed under 
the PRISMA guidelines, with the 
aim of synthesizing the current 
evidence on the application of PET-
based radiogenomics in oncology. An 
exhaustive search was conducted in 
databases such as PubMed, Scopus, and 
Web of Science, including publications 
up to October 31, 2024. Original 
studies integrating radiomic and 
genomic analysis in human populations 
were selected, and variables related to 
tumor type, radiopharmaceutical used, 
segmentation methods, statistical 
strategies applied, and clinical 
outcomes evaluated were extracted. 
The methodological quality of each 
study was assessed using the Radiomics 
Quality Score (RQS 2.0) scale, 
considering criteria such as external 
validation, data reproducibility, 
transparency in methodology, and 
multicenter design, which allowed 
for a critical evaluation of the 
scientific rigor of the included studies.

The combination of radiomic data 
obtained by PET with genomic 
information has shown significant 
potential for improving tumor 
characterization, particularly in terms 
of predicting specific mutations such as 
EGFR or KRAS. This approach allows for a 
more accurate assessment of the tumor’s 
biological profile, thus contributing 
to the personalization of treatment. 
It is important to consider the limited 
methodological quality of many of 
the studies included, marked by 
a lack of external validation, the 
use of retrospective designs, and 
poor standardization of workflows. 
This situation compromises the 
reproducibility of the findings and hinders 
their clinical application, underscoring 
the urgent need for prospective, 
multicenter studies with rigorously 
structured methodological protocols.

I n t e g r a t i n g 
radiogenomics and 
machine learning 
in musculoskeletal 
oncology care

2025 - Kumar et al.(5) Advanced computational methodology 
to integrate medical imaging data 
and genomic profiles in the context 
of musculoskeletal oncology. 
Radiomic variables were extracted 
from different imaging techniques 
and combined with transcriptomic, 
epigenetic, and mutational data to 
create a multimodal profile. To handle 
the high dimensionality of the data, 
reduction techniques such as LASSO 
and PCA were applied, and then 
regression and classification models 
were used to construct predictors 
of tumor molecular characteristics. 
Multimodal fusion enabled the 
generation of “virtual biopsies” 
using artificial intelligence, with 
the aim of detecting key mutations 
and guiding therapeutic decisions. 

The integration of radiomic and genomic 
data using artificial intelligence tools 
represents a promising strategy for 
improving the diagnosis and molecular 
characterization of musculoskeletal 
tumors. This approach allows the 
prediction of relevant genetic 
alterations without the need for invasive 
procedures, promoting safer and 
more efficient personalized medicine.
Despite the demonstrated potential 
of the multimodal models developed, 
their clinical implementation still faces 
significant challenges, such as workflow 
standardization, the need for robust 
databases, and external validation in 
large cohorts. Therefore, it is concluded 
that future research should focus on 
improving reproducibility and developing 
collaborative protocols to facilitate their 
adoption in oncology medical practice.

R a d i o g e n o m i c s : 
bridging the gap 
between imaging 
and genomics

2024 - Vivacqua et al.(16) The study was designed as a 
comprehensive narrative review 
to analyze the current state of 
radiogenomics in the context 
of precision oncology. Relevant 
scientific information was compiled 
by combining the analysis of high-
resolution medical images and 
genomic data derived from tumor 
profiles. A methodological framework 
was described that includes the high 
quantitative extraction of image 
features (radiomics) using artificial 
intelligence techniques, together with 
systematic integration with omic data 
such as genetic, transcriptomic, and 
proteomic sequences. Specific clinical 
applications in solid tumors (such as 
breast, lung, and glioma) were then 
identified, and technical advances, 
current challenges, and potential areas 
for future research were evaluated. 

Radiogenomics is establishing itself as a 
key tool for precision medicine, enabling 
non-invasive correlation between tumor 
phenotypic characteristics visible 
in medical images and underlying 
molecular alterations. This approach 
facilitates the prediction of genomic 
profiles relevant to diagnosis, 
prognosis, and therapeutic selection, 
contributing to more personalized and 
efficient decision-making in oncology.
Despite its transformative potential, 
the clinical implementation of 
radiogenomics still faces significant 
limitations, such as the lack of 
standardization in image acquisition and 
processing, the scarcity of prospective 
multicenter studies, and the need for 
external validation of predictive models. 
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The prognostic value 
of radiogenomics 
using CT in patients 
with lung cancer: a 
systematic review

2024 - Jiang et al.(3) The study was conducted as a systematic 
review according to PRISMA guidelines 
and was pre-registered in PROSPERO 
(CRD42023472571). A comprehensive 
search was conducted in key databases 
such as PubMed, Embase, Web of 
Science, and Cochrane Library, up 
to May 13, 2024, using predefined 
inclusion criteria to identify research 
combining radiomics and genomics 
in prognostic models for lung cancer. 
Methodological quality was assessed 
using the radiomics quality score (RQS) 
and the PROBAST tool for risk of bias. 
Finally, the AUC and C-index values 
of the radiogenomic models were 
analyzed and compared with those of 
the unimodal models, highlighting the 
superior performance of the former.

The combination of radiomic features 
extracted from computed tomography 
(CT) with genomic data significantly 
improves the predictive capacity 
of prognostic models in lung cancer 
patients, outperforming unimodal 
approaches. This integration allows for 
a more accurate assessment of tumor 
behavior, favoring risk stratification and 
personalized clinical decision-making.
Despite the potential value of 
radiogenomic models, their clinical 
applicability is still limited by the 
low methodological quality of several 
studies, heterogeneity in segmentation 
and data extraction methods, and 
limited external validation. These 
findings underscore the need for 
prospective, standardized, multicenter 
studies to more robustly translate this 
emerging approach into clinical practice.

Imaging genomics 
of cancer: a 
b i b l i o m e t r i c 
analysis and review

2025 - Gou et al.(13) Systematic review with bibliometric 
analysis, focusing on the field of 
radiogenomics applied to cancer. 
A structured search was conducted 
in the PubMed, Embase, and Web 
of Science databases up to July 
2024, using controlled terms and 
combinations such as “radiogenomics” 
and “cancer.” The selection of studies 
was performed independently by 
two researchers, applying inclusion 
criteria that restricted the articles to 
original research in humans, published 
in English, and using radiogenomics 
methodologies. Subsequently, a 
detailed data extraction was carried 
ou , and finally a bibliometric 
analysis was integrated using the 
Bibliometrix and VOSviewer packages, 
which allowed mapping publication 
trends, collaboration networks, 
and citation patterns in the area.

Research in oncological radiogenomics 
has grown exponentially over the 
last decade, revealing a consolidated 
interest in integrating medical imaging 
characteristics with genomic data to 
improve the diagnosis, prognosis, and 
therapeutic personalization of cancer. 
Despite methodological advances in 
the use of artificial intelligence and 
radiomics tools to extract complex 
features from medical images, the 
heterogeneity of the approaches used 
and the lack of standardization of 
workflows represent an obstacle to 
the consolidation of radiogenomics 
as a clinical tool. It is concluded that 
future research should focus on the 
multicenter validation of predictive 
models , database interoperability, 
and the development of consistent 
methodological frameworks that allow 
radiogenomic knowledge to be effectively 
translated into the healthcare setting.

Correlation between 
NF1 genotype and 
imaging phenotype 
on whole-body MRI: 
NF1 radiogenomics

2020 - Lui et al.(21) Twenty-nine patients diagnosed 
with neurofibromatosis type 1 (NF1) 
and germline mutations previously 
identified by targeted next-generation 
sequencing were selected. Based 
on previous whole-body magnetic 
resonance imaging (WBMRI) studies, 
218 neurofibromas (97 discrete and 
121 plexiform) were analyzed using 
a coronal STIR sequence. Each tumor 
was segmented individually, and 
59 image features were extracted 
using a proprietary volumetric 
analysis platform (3DQI). A radiomic 
heatmap was constructed to explore 
associations between image features 
and mutation domains/types, both 
at the tumor level and per patient. 
Linear mixed-effects models and one-
way analysis of variance (ANOVA) were 
applied to compare the similarity of 
radiomic profiles within and between 
different genetic mutation groups.

This preliminary study shows a significant 
correlation between germline mutations 
in the NF1 gene and patterns of radiomic 
features of neurofibromas assessed 
by whole-body magnetic resonance 
imaging. The findings support the 
existence of a radiogenomic link between 
the NF1 genotype and the imaging 
phenotype, reinforcing the potential 
of radiogenomics as a non-invasive 
tool for molecular characterization 
in neurofibromatosis type 1.
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The integration of radiological and genomic data promises to transform contemporary oncology by enabling 
more precise, dynamic medicine tailored to each patient’s individual characteristics. Radiogenomics is 
expected to play a crucial role in clinical decision-making, from initial diagnosis to the selection of targeted 
therapies and monitoring of therapeutic response, with the potential to improve clinical outcomes and patients’ 
quality of life.(1) In addition, radiogenomics could contribute to the discovery of new prognostic and predictive 
biomarkers, driving translational research and encouraging the design of more efficient and personalized 
clinical trials. In the long term, the incorporation of this discipline into digital health platforms and its linkage 
with other omics, such as transcriptomics and proteomics, could consolidate a comprehensive approach to 
tumor biology that transcends the current limits of cancer diagnosis and treatment.(20) This scenario, although 
promising, requires sustained investment and commitment to research, technological infrastructure, and the 
training of professionals capable of interpreting and integrating the complexity of the multidimensional data 
that radiogenomics provides.

CONCLUSION
The synthesis of the 21 studies shows consistent signals in two specific scenarios: lung cancer with CT to 

infer mutations, especially with EGFR/KRAS, and gliomas with multiparametric MRI for molecular classification, 
with quantified performance ranging from moderate to high in internal validations and variable results in other 
locations. The integration of imaging with clinical variables tends to outperform unimodal models, but clinical 
extrapolation is limited by poor external validation, lack of calibration, and workflow heterogeneity. 

Overall methodological quality remains low to moderate: RQS scores are affected by the absence of external 
validation and stability analysis; TRIPOD scores show persistent gaps in sample size, handling of missing data, 
and calibration reporting; and, according to PROBAST, the risk of bias is concentrated in participant selection, 
definition of predictors, and analysis with potential overfitting. This highlights precise operational needs for 
translation based on harmonizing, acquiring, segmenting, and standardizing functionality.

Radiogenomics, in its current state, complements, rather than replaces, biopsy, where molecular testing is 
prioritized, anticipating alterations of therapeutic interest and supporting stratification in defined contexts. To 
consolidate its clinical adoption, a prospective, multicenter agenda is required, with the publication of code 
and functionality dictionaries, harmonization procedures, and interoperable repositories, so that the observed 
performance translates into real, reproducible utility in oncology practice.
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