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ABSTRACT

Introduction: the increasing use of renewable energy in power generation systems has highlighted the need 
for efficient schemes to predict model parameters. In particular, photovoltaic systems require accurate tools 
to model and forecast solar energy generation behavior. 
Objective: to formulate SARIMA models with high accuracy in fitting, explanation, and prediction of energy 
yields in solar photovoltaic systems, specifically focused on the plant located at Plaza del Duque de Béjar, 
Spain. 
Method: a fitting strategy based on genetic algorithms was adopted to accelerate the estimation of the SARIMA 
model using hourly solar photovoltaic generation data. The auto.arima package in RStudio was employed as a 
methodological tool, enabling automatic selection and optimization of the best model parameters. Results: 
the selected model was SARIMA (5,0,0)(2,1,0)242424, characterized by a stationary stochastic process 
with a clear seasonal component. The model showed remarkable estimation accuracy, with low standard 
errors in the autoregressive coefficients. Additionally, the model residuals were well-adjusted, displaying 
independence and absence of serial autocorrelation. 
Conclusions: the proposed model demonstrated excellent predictive performance, supported by training 
error metrics (ME (Mean Error)= -1,344268 and MASE (Mean Absolute Scaled Error)= 0,7048786). Its sound 
mathematical structure and strong fit make it a reliable tool for forecasting photovoltaic solar energy in 
systems with similar characteristics.
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RESUMEN

Introducción: el creciente uso de energías renovables en los sistemas de generación eléctrica ha puesto de 
manifiesto la necesidad de contar con esquemas eficientes para la predicción de parámetros de modelos 
asociados a la producción energética. En particular, los sistemas fotovoltaicos requieren herramientas 
precisas que permitan modelar y anticipar el comportamiento de la generación de energía solar. 
Objetivo: formular modelos SARIMA altamente precisos en cuanto a ajuste, explicación y predicción de los 
rendimientos energéticos en sistemas solares fotovoltaicos, centrando el estudio en la planta ubicada en la 
Plaza del Duque de Béjar, España. 
Método: se adoptó una estrategia de ajuste basada en algoritmos genéticos para acelerar la estimación 
del modelo SARIMA a partir de datos horarios de generación solar fotovoltaica. Se utilizó el paquete auto.
arima de RStudio como herramienta metodológica, lo que permitió realizar una búsqueda automática de los 
mejores parámetros del modelo y su correspondiente optimización. 
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Resultados: el modelo SARIMA seleccionado fue el (5,0,0)(2,1,0)242424, caracterizado por un proceso 
estocástico estacionario con una marcada componente estacional. La precisión del modelo fue notable, 
evidenciada por errores estándar reducidos en los coeficientes autorregresivos. Además, los residuos del 
modelo se ajustaron adecuadamente, mostrando independencia y ausencia de autocorrelación serial. 
Conclusiones: el modelo propuesto presentó un excelente desempeño predictivo, respaldado por errores 
cuantificados en la fase de entrenamiento (ME (Error Medio)= -1,344268 y MASE (Error Absoluto Medio 
Escalado) = 0,7048786). Su adecuada estructura matemática y buen ajuste lo convierten en una herramienta 
confiable para la predicción de energía solar fotovoltaica en sistemas con características similares.

Palabras clave: Potencia; Sistemas de Generación; Fotovoltaicos; Modelos SARIMA; Algoritmo Genéticos, 
RStudio.

INTRODUCTION 
Solar energy is a viable resource for industrial, commercial, and domestic uses.(1) In recent years, photovoltaic 

solar energy (based on photovoltaic systems) has gained popularity because it is abundant, sufficient, clean, 
and environmentally friendly.(2) Since the weather can have a significant impact on electricity generation and 
reduce the integration of photovoltaic systems into the grid, accurate short-term forecasts are essential to 
optimize the power generated by solar photovoltaic power plants.(3)   

Accurate forecasting of power in solar energy systems helps to effectively manage energy generation and 
storage on a daily or hourly basis.(4) It is a fundamental resource for photovoltaic systems to participate in the 
energy market, enabling efficient strategy planning.(5) At this point, a comprehensive review of the literature 
has described various methods for achieving this accuracy, including statistical approaches for time series 
forecasting based on the ARIMA (Autoregressive Integrated Moving Average) methodology,(6) machine learning 
techniques for building artificial neural network models,(7) adaptive prediction models of energy collected for 
solar energy harvesting sensor networks,(8) physical models based on numerical weather forecasts and satellite 
images,(9) and hybrid approaches combining the first three methods.(10) These are the methodologies that help 
photovoltaic plants participate more effectively in the energy market.

Specifically, estimates of the power generated in watts for solar energy systems are typically modeled by 
fitting various methodologies, which lead to typologies for specific prediction models. The most recent advances 
in this field are those focused on the contributions derived from the implementation of artificial intelligence in 
the field of neural networks, specifically support vector machines (SVM) or short-term and long-term memory 
recurrent neural networks (LSTM),(11,12) recurrent neural networks under the backpropagation paradigm,(13) 
autoregressive neural networks,(14,15) autoregressive neural network models with exogenous input,(16) swarm 
intelligence,(17,18) and uses of machine learning, including deep learning. 

With an emphasis on solar energy systems, deep learning models have been studied in depth for their 
potential application in time series prediction. While taking into account the limitations and particular factors 
of each architecture, such as training efficiency, interpretability, and data handling, these models focus on 
temporal dependencies, sequential data management, and improving prediction accuracy.(19)

The above arguments are subject to the type of data handled and the approach applied within the research 
paradigm to obtain adequate modeling. These methods for model construction are divided according to 
underlying interest, i.e., the analysis of the physical paradigm, which considers the use of predictor variables 
associated with meteorological records and solar irradiation impacts. Alternatively, a statistical approach can 
be used to predict the behavior of the phenomenon that guides the obtaining of solar power generation from 
a historical data matrix.(20,21,22)

On the other hand, the characterization of a deep-rooted seasonal condition in the temporal data, in line 
with the recommendation based on the literature review, the parameter estimates in seasonal autoregressive 
integrated moving average (SARIMA) models, have been successful in predicting a particular phenomenon.
(5,21,23,24,25) Essentially, the extensive existing literature develops an analytical and comparative analysis of 
different models for predicting power generation by photovoltaic systems, focusing on the development of 
hybrid models with commendable strengths and implicit weaknesses.(10,26)

The significant advantage of using SARIMA modeling lies in its simplicity, which usually adjusts easily to 
stationary stochastic processes with a marked seasonal component.(6) Therefore, when a series exhibits a non-
stationary process, transformations are performed to convert the series under analysis into a stationary one 
and to adjust the ARIMA model parameters appropriately. This model can be constructed by implementing 
sophisticated statistical techniques.(27) The latter approach involves optimizing the selection by using statistics 
and determining decision criteria, such as the Akaike Information Criterion (AIC) and the sum of squared errors 
(SSE).
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In the current context of energy transition and the use of renewable sources, photovoltaic generation 
systems have taken on a leading role. In this sense, accurate prediction of the power generated is a strategic 
focus for operational planning and the sustainable development of these technologies. According to the 
specialized literature, seasonal autoregressive integrated moving average (SARIMA) models have proven to 
be highly effective in predicting phenomena with seasonal components, as evidenced by several successful 
empirical studies.

Despite the rise of hybrid models that integrate artificial intelligence and machine learning techniques, 
SARIMA approaches continue to offer significant advantages, particularly due to their simplicity, statistical 
robustness, and ability to adjust to stationary stochastic processes with strong seasonality.(6) This is particularly 
valuable when the time series exhibits non-stationary behavior, allowing it to be converted into a stationary 
series through appropriate transformations and the model parameters to be correctly adjusted. In addition, the 
construction of SARIMA models is enhanced by the use of advanced statistical tools and the implementation of 
decision criteria such as the Akaike Information Criterion (AIC) and the Sum of Squared Residuals (SSE), which 
allow for optimal model selection.(27)

Within this framework, the present study is justified by the need to model the electrical power generation 
series in a photovoltaic solar system located in the Plaza del Duque de Béjar, Villanueva del Duque, Spain. 
This series is characterized by its daily periodicity (every 24 hours) over a continuous period of four years 
(2019–2022), which reveals a clear seasonal component. Thus, the research is proposed as a first step towards 
the stochastic modeling of this series, establishing a solid basis for future energy forecasts that improve the 
management of renewable resources.

According to the background information provided, the development of this scientific article comprises 
a first stage defined by the description of the seasonal component present in the power series generated in 
the photovoltaic system located in the Plaza del Duque de Béjar, Villanueva del Duque, Spain, due to the 
nature of the information collection every 24 hours, 365 days a year, during the coverage period from 2019 to 
2022. Secondly, the SARIMA model parameters were estimated, incorporating an optimization strategy based 
on genetic algorithms to improve the accuracy of the power generated by renewable energy systems. This 
approach enabled the acceleration of the model adjustment process using hourly solar photovoltaic generation 
data. Finally, the results obtained are discussed, and conclusions derived from the analysis are formulated, 
highlighting the effectiveness of the proposed model in similar contexts.

METHOD
This study adopts a quantitative, observational, and retrospective design based on historical hourly solar 

photovoltaic power generation data recorded between 2019 and 2022 at the plant located in Plaza del Duque 
de Béjar, Spain. Given the identified seasonal behavior in the time series, the SARIMA (Seasonally Adjusted 
Autoregressive Integrated Moving Average) model was selected as the modeling technique due to its suitability 
for capturing stochastic dynamics with a seasonal component.

To improve the parameter estimation process, an adjustment strategy based on genetic algorithms was 
implemented, which allowed for the optimization of model selection and accelerated convergence towards a 
better-fitting structure. The modeling process was carried out using the auto.arima function of the forecasting 
package in RStudio, which facilitates the automatic selection and refinement of model parameters based on 
criteria such as the Akaike Information Criterion (AIC) and the sum of squared errors (SSE).

The methodological procedure was developed in the following stages:
1.	 Preprocessing and transformation of the data to achieve stationarity of the series.
2.	 Application of the auto.arima algorithm to identify the optimal parameters of the SARIMA model.
3.	 Evaluation of model performance using statistical indicators such as ME (Mean Error) and MASE 

(Mean Absolute Scaled Error).
4.	 Residual diagnosis to verify independence and absence of serial autocorrelation.

This methodology provided a robust and efficient framework for modeling and predicting solar power 
generation, in accordance with best practices in time series analysis.(4)

Data description
The construction of statistical models based on data referring to surface solar radiation (SARAH3) from 

the records of the Photovoltaic Geographic Information System (PVGIS). This dataset provides records at the 
location with Latitude: 38,393 and Longitude: -5,000, in decimal degrees, for the power generated (W) by a 
photovoltaic system centered in the Plaza del Duque de Béjar, Villanueva del Duque, Spain. This location allows 
for management in accordance with the European Union and other countries’ regulations.(28) The window for 
photovoltaic generation is oriented to optimize incident solar radiation during the time coverage from 8:10 
a.m. to 4:10 p.m., so that incident solar radiation is at its maximum. The database is recorded at 24-hour 
intervals, specifically after 10 minutes determined directly from each hour, from 2019 to 2021.
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Protocol for the construction of SARIMA models
This section is necessary to evaluate the power (W) of solar energy generated by photovoltaic systems, 

with the aim of constructing SARIMA models, which essentially requires a systematic step-by-step data analysis 
process, highlighting the importance of using statistical techniques and tests for the proper modeling of the 
underlying structure in the data recorded for the power generated in photovoltaic systems (figure 1).

Source: Kushwaha et al.(29)

Figure 1. SARIMA methodology flowchart

Figure 1 illustrates a diagram of how the solar energy prediction process should be carried out using the 
SARIMA method. This process begins with the identification of historical data, adjusting the descriptive and 
statistical measures required for an estimation of the parameters p and q, performing a statistical analysis, 
eliminating trends, and confirming the stability of the series. A key step is selecting the best ARIMA model for 
making predictions using the identified structure. Finally, the final predictions of power (W) in solar energy 
generation in photovoltaic systems are obtained.

Seasonal ARIMA (SARIMA) process methodology
If the series {Yt} has a marked seasonal component of period s, this can be eliminated by applying the 

seasonal difference operator with a lag of order s, equivalent to the data collection periods, thus obtaining a 
series {Zt} with an ARMA process structure.

In the context of a time series that exhibits a certain level of stationarity, when the mean and variance of 
the time series do not show significant fluctuations, the time series is said to be stationary.(23) This means that 
the curve fitted to the sample sequence can continue in the future depending on existing circumstances. In 
a different scenario, the regular difference operator must be applied to stabilize the mean value of the time 
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series.(30) On the other hand, when the series exhibits seasonal characteristics, consideration should be given to 
correcting the seasonality inherent in the data collection with the seasonal difference operator to ensure that 
this component, which distorts the correct identification of the parameters in the model, is eliminated.(12) The 
key is to identify these periods of seasonality in time and to use a seasonal index to identify them.

Therefore, a time process that exhibits a regular trend and a marked seasonal component can define an 
integration parameter of the form d and D. In addition, considering d and D to be non-negative integers, then 
{Zt} is a multiplicative seasonal process ARIMA(p,d,q)×(P,D,Q)s with period s, if the series differentiated in its 
regular and seasonal components is denoted by Zt  = (1 - B)d  (1 - Bs)D Yt, it represents a causal ARMA process 
defined by:

𝜑𝜑𝑝𝑝(𝐵𝐵)𝛷𝛷𝑃𝑃(𝐵𝐵𝑠𝑠)𝑍𝑍𝑡𝑡 =  𝜃𝜃𝑞𝑞(𝐵𝐵)𝛩𝛩𝑄𝑄(𝐵𝐵𝑠𝑠)𝜀𝜀𝑡𝑡 , {𝜀𝜀𝑡𝑡} ∼  𝜀𝜀𝑡𝑡 𝑁𝑁(0, 𝜎𝜎2)                  (1) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (5,0,0)𝑥𝑥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(2,1,0)24 → 𝜙𝜙5(𝐿𝐿). 𝛷𝛷2(𝐿𝐿24). 𝑌𝑌𝑡𝑡 = 𝜀𝜀𝑡𝑡              (2) 
 

(1 − 0,6608𝐿𝐿 − 0,0955𝐿𝐿2 + 0,0057𝐿𝐿3 + 0,0173𝐿𝐿4 + 0,0343𝐿𝐿5)(1 + 0,6414𝐿𝐿24 + 0,3023𝐿𝐿24). 𝑌𝑌𝑡𝑡 = (1 +
0,6414𝐿𝐿24 + 0,3023𝐿𝐿24). 𝜀𝜀𝑡𝑡       (3) 
 

𝑌𝑌𝑡𝑡 = 𝜇𝜇 + 0,6608. 𝑌𝑌𝑡𝑡−1 + 0,0955. 𝑌𝑌𝑡𝑡−2 − 0,0057. 𝑌𝑌𝑡𝑡−3 − 0,0173. 𝑌𝑌𝑡𝑡−4 − 0,0343. 𝑌𝑌𝑡𝑡−5 − 0,6414. 𝑌𝑌𝑡𝑡−24 −
0,3023. 𝑌𝑌𝑡𝑡−24 + 𝜀𝜀𝑡𝑡                     (4) 

 

This type of model is called a seasonal ARIMA model. Essentially, according to (9), the seasonal ARIMA model 
includes autoregressive and moving average terms with lags of order s.

The seasonal ARIMA process methodology is used to forecast the future of a time series that exhibits a 
seasonal pattern (s= 24 hours). To do this, historical data from a time series is used to estimate the parameters 
of the seasonal ARIMA model. Once the parameters have been calculated and the model assumptions validated, 
the model can be used to forecast the future of the time series.(30)

In the verification stage to ensure that the time series is stationary, the Augmented Dickey Fuller (ADF) 
test is applied, which consists of determining whether a sequence contains a unit root; if so, the time series 
is considered non-stationary; if not, it is considered stationary.(6) This study uses ADF statistics on solar power 
generation collected from photovoltaic systems in the Plaza del Duque de Béjar, Spain. The absence of unit 
roots in the time series indicates that the collected time series is stable in terms of mean and variability, which 
is appropriate for constructing SARIMA models. 

The models obtained from a seasonal ARIMA process have multiple applications for forecasting temporal 
variables, which must be implemented for processes that exhibit a variety of seasonal patterns, including 
additive and multiplicative seasonal patterns. They can also be used to predict time series that show a variety 
of non-stationary patterns, including linear and non-linear non-stationary patterns.(31) The robust advantage of 
using this type of model lies in the advanced accuracy of short-term prediction results.(32)

In terms of interpretation, autoregressive and moving average models are combined to create the ARMA 
model. The moving average (MA) parameters closely simulate the sample values to explain the disturbance 
effects in previous periods. In contrast, the autoregressive (AR) parameters assume that the sample values at 
current times for the time series are related to the values recorded at previous times. The weighted average 
of the earlier values taken by the time series represents the behavior of the sample values at current times.

RESULTS 
Stationarity tests in the series defining power in photovoltaic systems

Implementation of the Dickey Fuller statistic augmented according to the adf_test command (Table 1), 
applied in R-Studio to determine the existence of unit roots in the observed series consisting of the power in 
photovoltaic systems in the Plaza del Duque de Béjar, Spain. The formulation of the hypotheses defined focuses 
on a null hypothesis (H0) that posits the existence of a unit root, indicating that the series is non-stationary, 
while the alternative hypothesis (H1) suggests that there is no unit root, implying that the series is stationary. 

Table 1. Augmented Dickey Fuller Statistic

Augmented Dickey-Fuller Test Value

Dickey-Fuller -15,808

Lag order 29

p-value 0

Based on the findings presented in table 1, it can be argued that the p-value=0,01 represents a value 
lower than the minimum permissible error (α=0,05), a determining factor in concluding that the time series 
constituted by the power recorded in photovoltaic systems is stationary. 

Adjustment of the SARIMA model using genetic algorithms
The model used for visualization is obtained using genetic algorithms to speed up estimation. The main 

objective is not to obtain a perfect forecast, but to obtain a good visualization of the results.
The use of genetic algorithms for parameter estimation and selection in SARIMA models has proven to 
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be an effective strategy for accelerating the adjustment process in high-dimensional and highly seasonal 
environments, such as the power generation series in solar systems. Table 2 shows a comparative evaluation 
between multiple combinations of parameters (p,d,q)(P,D,Q)[s](p,d,q)(P,D,Q)[s](p,d,q)(P,D,Q)[s], where the 
negative log-likelihood value or some related function (presumably the AIC or log-likelihood) is used as the 
selection metric.

During the initial process, which uses approximations to speed up calculations, various models are explored. 
Some models are immediately discarded because they generate infinite results (“Inf”), indicating convergence 
problems, overfitting, or numerical instability. On the other hand, viable models such as ARIMA(5,0,0)(2,1,0)
[24] consistently show the lowest error values, positioning them as optimal candidates within the search space.

The ARIMA(5,0,0)(2,1,0)[24] model ultimately stands out as the best fit after a second “no approximation” 
refinement phase, confirming its robustness. This model adequately captures the daily seasonal structure 
(frequency 24) of the series and represents a stationary stochastic process in differences, with a dominant 
autoregressive structure at both the regular and seasonal levels.

It is important to note that, although the objective was not to obtain a perfect forecast, the quality of the 
fit achieved reinforces the validity of the model for visualization and exploratory analysis, as well as its possible 
future application in predictive scenarios. Furthermore, the use of genetic h l algorithms allows overcoming 
limitations inherent to traditional search methods such as grid search, by avoiding getting trapped in local 
minima.

Table 2. Results of the genetic algorithm for SARIMA estimation

Fitting models using approximations to speed things up...
 ARIMA(2,0,2)(1,1,1)[24] with drift         : Inf
 ARIMA(0,0,0)(0,1,0)[24] with drift         : 683269,9
 ARIMA(1,0,0)(1,1,0)[24] with drift         : 661046,7
 ARIMA(0,0,1)(0,1,1)[24] with drift         : Inf
 ARIMA(0,0,0)(0,1,0)[24]                        : 683267,9
 ARIMA(1,0,0)(0,1,0)[24] with drift         : 668133,7
 ARIMA(1,0,0)(2,1,0)[24] with drift         : 658551,4
 ARIMA(1,0,0)(2,1,1)[24] with drift         : Inf
 ARIMA(1,0,0)(1,1,1)[24] with drift         : Inf
 ARIMA(0,0,0)(2,1,0)[24] with drift         : 676584,4
 ARIMA(2,0,0)(2,1,0)[24] with drift         : 658430,5
 ARIMA(2,0,0)(1,1,0)[24] with drift         : 660897,2
 ARIMA(2,0,0)(2,1,1)[24] with drift         : Inf
 ARIMA(2,0,0)(1,1,1)[24] with drift         : Inf
 ARIMA(3,0,0)(2,1,0)[24] with drift         : 658400,5
 ARIMA(3,0,0)(1,1,0)[24] with drift         : 660882,5
 ARIMA(3,0,0)(2,1,1)[24] with drift         : Inf
 ARIMA(3,0,0)(1,1,1)[24] with drift         : Inf
 ARIMA(4,0,0)(2,1,0)[24] with drift         : 658361,5
 ARIMA(4,0,0)(1,1,0)[24] with drift         : 660851,7
 ARIMA(4,0,0)(2,1,1)[24] with drift         : Inf
 ARIMA(4,0,0)(1,1,1)[24] with drift         : Inf
 ARIMA(5,0,0)(2,1,0)[24] with drift         : 658333,6
 ARIMA(5,0,0)(1,1,0)[24] with drift         : 660820,9
 ARIMA(5,0,0)(2,1,1)[24] with drift         : Inf
 ARIMA(5,0,0)(1,1,1)[24] with drift         : Inf
 ARIMA(5,0,1)(2,1,0)[24] with drift         : 658340,1
 ARIMA(4,0,1)(2,1,0)[24] with drift         : 658337
 ARIMA(5,0,0)(2,1,0)[24]                        : 658331,6
 ARIMA(5,0,0)(1,1,0)[24]                        : 660818,9
 ARIMA(5,0,0)(2,1,1)[24]                        : Inf
 ARIMA(5,0,0)(1,1,1)[24]                        : Inf
 ARIMA(4,0,0)(2,1,0)[24]                        : 658359,5
 ARIMA(5,0,1)(2,1,0)[24]                        : 658338,1
 ARIMA(4,0,1)(2,1,0)[24]                        : 658335
 Now re-fitting the best model(s) without approximations...
 ARIMA(5,0,0)(2,1,0)[24]                    : 658847,1
 Best model: ARIMA(5,0,0)(2,1,0)[24]                    

Estimation of SARIMA model parameters
In the photovoltaic system power series used to estimate the SARIMA model parameters, the auto.arima 

package in RStudio was used to automatically search for the best parameters and optimize the model.
Table 3 shows the values of the parameters estimated in the ARIMA(5,0,0)(2,1,0)24model identified. In 
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addition, the accuracy of the parameter estimates in the model is noteworthy, due to the small values for the 
standard error in the r autoregressive coefficients, both for the regular part of the series and for the seasonal 
part.

On the other hand, the variance of the model, according to the power records in the photovoltaic systems, 
determines that σ2 = 4,519e+09, and the quality of the model fit (log likelihood = -329415,5) reveals that 
there is a very high quantification, which represents a good fit according to the parameters defined in the 
mathematical structure.

Table 3. SARIMA parameter estimation

Parameters ar1 ar2 ar3 ar4 ar5 sar1 sar2

Coefficients 0,6608 0,0955 -0,0057 -0,0173 -0,0343 -0,6414 -0,3023

Standard error (s.e.) 0,0062 0,0074 0,0074 0,0074 0,0062 0,0059 0,0059

The RStudio software adapts series to the models ARIMA(p,d,q)x(P,D,Q)s, i.e., the autoregressive and moving 
average parts for the regular and seasonal components in the series under study. In this regard, the parameter 
estimates in the model determined using the package are shown (table 2), in this case a multiplicative model:

𝜑𝜑𝑝𝑝(𝐵𝐵)𝛷𝛷𝑃𝑃(𝐵𝐵𝑠𝑠)𝑍𝑍𝑡𝑡 =  𝜃𝜃𝑞𝑞(𝐵𝐵)𝛩𝛩𝑄𝑄(𝐵𝐵𝑠𝑠)𝜀𝜀𝑡𝑡 , {𝜀𝜀𝑡𝑡} ∼  𝜀𝜀𝑡𝑡 𝑁𝑁(0, 𝜎𝜎2)                  (1) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (5,0,0)𝑥𝑥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(2,1,0)24 → 𝜙𝜙5(𝐿𝐿). 𝛷𝛷2(𝐿𝐿24). 𝑌𝑌𝑡𝑡 = 𝜀𝜀𝑡𝑡              (2) 
 

(1 − 0,6608𝐿𝐿 − 0,0955𝐿𝐿2 + 0,0057𝐿𝐿3 + 0,0173𝐿𝐿4 + 0,0343𝐿𝐿5)(1 + 0,6414𝐿𝐿24 + 0,3023𝐿𝐿24). 𝑌𝑌𝑡𝑡 = (1 +
0,6414𝐿𝐿24 + 0,3023𝐿𝐿24). 𝜀𝜀𝑡𝑡       (3) 
 

𝑌𝑌𝑡𝑡 = 𝜇𝜇 + 0,6608. 𝑌𝑌𝑡𝑡−1 + 0,0955. 𝑌𝑌𝑡𝑡−2 − 0,0057. 𝑌𝑌𝑡𝑡−3 − 0,0173. 𝑌𝑌𝑡𝑡−4 − 0,0343. 𝑌𝑌𝑡𝑡−5 − 0,6414. 𝑌𝑌𝑡𝑡−24 −
0,3023. 𝑌𝑌𝑡𝑡−24 + 𝜀𝜀𝑡𝑡                     (4) 

 

The mathematical representation is formulated specifically using the following expression:

𝜑𝜑𝑝𝑝(𝐵𝐵)𝛷𝛷𝑃𝑃(𝐵𝐵𝑠𝑠)𝑍𝑍𝑡𝑡 =  𝜃𝜃𝑞𝑞(𝐵𝐵)𝛩𝛩𝑄𝑄(𝐵𝐵𝑠𝑠)𝜀𝜀𝑡𝑡 , {𝜀𝜀𝑡𝑡} ∼  𝜀𝜀𝑡𝑡 𝑁𝑁(0, 𝜎𝜎2)                  (1) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (5,0,0)𝑥𝑥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(2,1,0)24 → 𝜙𝜙5(𝐿𝐿). 𝛷𝛷2(𝐿𝐿24). 𝑌𝑌𝑡𝑡 = 𝜀𝜀𝑡𝑡              (2) 
 

(1 − 0,6608𝐿𝐿 − 0,0955𝐿𝐿2 + 0,0057𝐿𝐿3 + 0,0173𝐿𝐿4 + 0,0343𝐿𝐿5)(1 + 0,6414𝐿𝐿24 + 0,3023𝐿𝐿24). 𝑌𝑌𝑡𝑡 = (1 +
0,6414𝐿𝐿24 + 0,3023𝐿𝐿24). 𝜀𝜀𝑡𝑡       (3) 
 

𝑌𝑌𝑡𝑡 = 𝜇𝜇 + 0,6608. 𝑌𝑌𝑡𝑡−1 + 0,0955. 𝑌𝑌𝑡𝑡−2 − 0,0057. 𝑌𝑌𝑡𝑡−3 − 0,0173. 𝑌𝑌𝑡𝑡−4 − 0,0343. 𝑌𝑌𝑡𝑡−5 − 0,6414. 𝑌𝑌𝑡𝑡−24 −
0,3023. 𝑌𝑌𝑡𝑡−24 + 𝜀𝜀𝑡𝑡                     (4) 

 

Simplifying the above structure, we obtain:

𝜑𝜑𝑝𝑝(𝐵𝐵)𝛷𝛷𝑃𝑃(𝐵𝐵𝑠𝑠)𝑍𝑍𝑡𝑡 =  𝜃𝜃𝑞𝑞(𝐵𝐵)𝛩𝛩𝑄𝑄(𝐵𝐵𝑠𝑠)𝜀𝜀𝑡𝑡 , {𝜀𝜀𝑡𝑡} ∼  𝜀𝜀𝑡𝑡 𝑁𝑁(0, 𝜎𝜎2)                  (1) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (5,0,0)𝑥𝑥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(2,1,0)24 → 𝜙𝜙5(𝐿𝐿). 𝛷𝛷2(𝐿𝐿24). 𝑌𝑌𝑡𝑡 = 𝜀𝜀𝑡𝑡              (2) 
 

(1 − 0,6608𝐿𝐿 − 0,0955𝐿𝐿2 + 0,0057𝐿𝐿3 + 0,0173𝐿𝐿4 + 0,0343𝐿𝐿5)(1 + 0,6414𝐿𝐿24 + 0,3023𝐿𝐿24). 𝑌𝑌𝑡𝑡 = (1 +
0,6414𝐿𝐿24 + 0,3023𝐿𝐿24). 𝜀𝜀𝑡𝑡       (3) 
 

𝑌𝑌𝑡𝑡 = 𝜇𝜇 + 0,6608. 𝑌𝑌𝑡𝑡−1 + 0,0955. 𝑌𝑌𝑡𝑡−2 − 0,0057. 𝑌𝑌𝑡𝑡−3 − 0,0173. 𝑌𝑌𝑡𝑡−4 − 0,0343. 𝑌𝑌𝑡𝑡−5 − 0,6414. 𝑌𝑌𝑡𝑡−24 −
0,3023. 𝑌𝑌𝑡𝑡−24 + 𝜀𝜀𝑡𝑡                     (4) 

 
This model is used to analyze stationary stochastic processes with a marked seasonal component of 24 

hours in daily records for power in photovoltaic systems. In this context, this graphical representation can 
be highlighted in figure 1, which represents a deterministic process defined by autoregressive parameters 
within the five (previous 05 hours) time lags. About the random component, it is characterized in the seasonal 
structure of the series by a marked component defined by two previous autoregressive parameters, in a time 
frame consisting of daily records every 24 hours.

Once the mathematical equation has been obtained, errors in the training data set are determined. This 
refers to the determination of discrepancies between the output values predicted by a model and the actual 
target values in the training data set. Among the measures used to evaluate the model’s performance in the 
training set are the Mean Error (ME), the Root Mean Square Error (RMSE), and the Mean Absolute Error (MAE).

Table 4 summarizes the main error statistics used to evaluate the performance of the SARIMA(5,0,0)(2,1,0)
[24] model during the training phase. These metrics allow us to quantify the accuracy and robustness of the 
model’s fit to the historical data, providing quantitative evidence of its ability to model hourly photovoltaic 
solar energy generation adequately.

•	 ME (Mean Error = -1,344268): indicates a slight negative bias in the predictions, suggesting that 
the model tends to slightly underestimate the actual values. However, since the value is close to zero, 
the bias is minimal and acceptable.

•	 RMSE (Root Mean Square Error = 67185,63): provides a measure of the average magnitude of the 
prediction error, heavily penalizing large errors. Although the value is relatively high in absolute terms, 
it should be interpreted in relation to the scale of the power generated and is considered consistent with 
the inherent variability of the series.

•	 MAE (Mean Absolute Error = 29122,39): reflects the average absolute value of the errors, which 
gives a clear idea of the average magnitude of the error without considering its direction. Its value is 
consistent with the RMSE, indicating stability in the model without the presence of large outliers.

•	 MASE (Scaled Mean Absolute Error = 0,7048786): this is a scaled metric that allows the accuracy of 
the model to be compared to a naïve model (without predictive capacity). A value less than 1 indicates 
that the SARIMA model offers better predictive performance than a base model, validating its suitability 
for the analysis and visualization of the series.

•	 ACF1 (Autocorrelation of the residual at lag 1 = -0,00019): evaluates whether the model residuals 
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show immediate serial correlation. The value is practically zero, confirming that the residuals are 
independent and random, fulfilling a key validity assumption for SARIMA models.

Taken together, these indicators support the statistical consistency, low bias, generalizability, and good fit 
of the proposed model, fully justifying its selection as the base structure for future analysis and predictions in 
similar energy contexts.

Table 4. Evaluation metrics for training data set

Error statistics Measures on training set

ME (Mean Error) -1,344268

RMSE (Root Mean Square Error) 67185,6

MAE (Mean Absolute Error) 29122,39

MASE (Scaled Mean Absolute Error) 0,7048786

ACF1 (Autocorrelation of the residual at lag 1) -0,0001895767

A low training error indicates that the model has learned well from the data during the training process, but 
a very low error can also be a sign of overfitting. A negative value for the mean error (ME=-1,344268) indicates 
that, on average, the predictions are lower than the observed values. Another statistic, represented by the root 
mean square error (RMSE=67185,63), expresses the magnitude of the error in the predictions; a lower value 
indicates a better fit. The mean absolute error (MAE=29122,39) provides a clear measure of the accuracy of the 
model, and the value close to zero for ACF1 suggests that there is no significant correlation in the prediction 
errors (table 4).

Validation of the SARIMA model
The validation of an identified and estimated model is an essential task to check whether the SARIMA(5,0,0)

(2,1,0)24model fits the data adequately, reviewing parameters such as stability and seasonality. The first premise 
must be to assess whether the residuals represent Gaussian white noise processes. Therefore, a residual plot 
must be constructed to verify that the expected mean value for the residuals is zero for all values over time 
(figure 2).

Figure 2. Residual plot in the SARIMA(5,0,0)(2,1,0)[24] model

The conjecture regarding figure 2 is to establish, by calculating the augmented Dickey-Fuller statistic = 
-26,123, lag order = 29, p-value = 0,01, whether the residuals are stationary. Therefore, this SARIMA(5,0,0)
(2,1,0)24 model represents a good structure that provides a good fit. Combined with the result of the Box-Ljung-
Box test = 0,00094546, with a probability value (p-value) = 0,9755, this suggests that the residuals do not show 
significant serial autocorrelation and are therefore independent. Given that the p-value is much greater than 
the standard significance level (α=0,05), it can be concluded that the residuals obtained by the SARIMA model 
are appropriate for defining an optimal fit in terms of independence. These assertions are consolidated by a 
visual examination of the graphs shown in figure 3.
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Figure 3. Diagnostic graphs for the residuals in the SARIMA(5,0,0)(2,1,0)[24] model

Figure 3 shows three graphical representations for the residual variable. First, the standardized residuals 
of the model are represented as a function of time centered around the mean value of zero and should be 
distributed randomly, with no apparent patterns. Second, the ACF correlogram of the residuals maintains lags 
within the confidence limits, indicating that the residuals are independent and do not exhibit statistically 
significant serial autocorrelation. Finally, the p-values of the Ljung-Box statistic for different lags are shown 
in a graphical representation, whose interpretation implies that all p-values are greater than the standard 
significance level (suggesting that there is no evidence of serial autocorrelation in the residuals produced by 
the SARIMA(5,0,0)(2,1,0)(24) model. In short, these findings on the general diagnosis indicate that the SARIMA 
model adjusted from the photovoltaic system power data appears to be adequate, since the residuals meet the 
assumptions of independence and absence of autocorrelation. This is a good indication that the model is well 
specified and can be used to make forecasts in future periods.

DISCUSSION
The contribution of this study has been remarkable in terms of findings, particularly in the comparative 

analysis of results obtained through numerical modeling, with the data recorded in the photovoltaic system in 
the Plaza del Duque de Béjar, Spain. It also provides a comparative efficiency analysis with the possible models 
obtained with a genetic algorithm implemented in specific packages within the RStudio 2024.09.1 program. The 
SARIMA model parameters were adjusted using a set of 26 304 data points related to the photovoltaic power 
records registered in the system from January 1, 2019, to December 31, 2021, considering the optimization 
of the parameters in the photovoltaic system to ensure increased energy efficiency. They improved overall 
efficiency.(33,34,35)

Therefore, an adequate estimation of SARIMA models allows the underlying mathematical structure to be 
used to explain the phenomenon under study and predict possible future scenarios for the power (W) generated 
by surface solar radiation (SSR) using a set of data collected from photovoltaic systems in the Plaza del Duque 
de Béjar, Spain. At this point, the most significant statistics are related to the mathematical structure of the 
SARIMA (5, 0, 0)(2, 1, 0)(24) model, which is why this variant was chosen after performing 35 iterations to form 
this integrated moving average autoregressive model with a marked regular and seasonal component. In a 
general context, for the final selection of the best structure, the adequacy of the identification and estimation 
of the aforementioned SARIMA mathematical equation must be evaluated by applying the Ljung-Box statistical 
test used to identify the most significant model(36)  in terms of the statistical insignificance of the residual 
autocorrelations in the different time lags.

The SARIMA(5,0,0)(2,1,0)(24) model, identified using genetic algorithms, has demonstrated statistically 
robust performance in the training set, as evidenced by a MASE value of 0,7048786, indicating that its 
predictive capacity significantly exceeds that of a naïve model. This result validates the efficiency of the model 
in capturing the seasonal and stochastic structure of the solar power generation series. Furthermore, as it has 
the lowest error value among all the configurations evaluated by the genetic algorithm, it is established as the 
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optimal modeling option for the study context.
This finding is consistent with previous research that has supported the use of SARIMA models in similar 

contexts. For example, (39) demonstrated that SARIMA models allow accurate forecasts of daily solar radiation, 
facilitating energy planning. Similarly, (40) applied SARIMA to hourly solar power data in Japan, achieving robust 
predictions in the presence of seasonality. Likewise, (41) highlighted that, although hybrid models offer marginal 
improvements in some cases, SARIMA models remain reliable tools, mainly due to their interpretable structure 
and low computational complexity.

Under this approach, it is worth reaffirming the usefulness of applying SARIMA models optimized using 
evolutionary algorithms in photovoltaic systems with extensive hourly records, such as the plant in Plaza del 
Duque de Béjar, Spain. This methodology not only improves the efficiency of parameter estimation but also 
provides a solid method on which to base strengthening forecasting, operational management, and energy 
planning processes in the context of the transition to renewable sources.

The requirement for an accurate forecast of photovoltaic solar energy generation within a short period 
is essential to ensure safe and economical operation,(37) as well as for energy management in the grid. This 
forecast should be made using a Seasonally Autoregressive Integrated Moving Average (SARIMA) model for 
forecasting various periods (resolution of 1 hour and 10 minutes) of solar photovoltaic generation.(29) While 
long- and medium-term forecasts maximize the benefits of photovoltaic power generation and its market 
penetration, short-term forecast horizons estimate the rates of increase in photovoltaic power.(38) According 
to Husein et al.(4), their contributions were decisive in demonstrating that forecasts of solar radiation and its 
impact on generation power in photovoltaic systems one day in advance can reduce the annual energy costs of 
microgrid operations in commercial buildings. 

A viable alternative for future developments in this line of research is represented by the growing preference 
for deep learning approaches in time series prediction for solar power generation. This assertion has been 
supported by the findings of Kim et al.(3), who conducted a study on prediction accuracy for photovoltaic power 
generation using seven models in the cities of Ansan and Suwon. This study discovered a decline in seasonal 
and meteorological forecasts. Alternatively, hybrid deep learning models could be used for solar energy time 
series forecasting.(10)

CONCLUSIONS
SARIMA model estimation has proven to be an effective tool for short-term prediction of the power 

generated by photovoltaic systems, allowing their performance to be evaluated using statistical metrics 
applied to the training data set. In this study, the SARIMA(5,0,0)(2,1,0) model was identified as the most 
appropriate mathematical structure after multiple iterations using genetic algorithms, which facilitated 
efficient optimization of the adjustment process.

The model was validated using the Ljung-Box statistic, which is used to analyze the independence of 
the residuals. The result (p-value > 0,05) confirmed the absence of significant serial autocorrelation, thus 
supporting the consistency of the model and its ability to capture the seasonal and stochastic dynamics of the 
series correctly.

As a future projection, we propose exploring hybrid and advanced approaches based on deep learning, 
which allow addressing the nonlinear complexity inherent in photovoltaic generation time series. In particular, 
we suggest developing a polynomial neural network based on the GMDH (Group Method of Data Handling) 
method, capable of inductively optimizing the prediction of the power generated. This type of architecture 
is promising for scenarios where solar irradiation undergoes sudden and unpredictable changes, affecting the 
reliability and stability of the energy system.
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