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ABSTRACT

Introduction: physical activity has been shown to be a crucial element in the regulation of glucose 
metabolism and glycogenesis, processes that are fundamental to maintaining energy homeostasis. The 
process of glycogenesis, which involves the generation of glucose from non-glucose precursors, is essential 
under conditions of prolonged fasting and during recovery after physical activity. 
Objective: the purpose of this systematic review is to examine the influence of physical exercise on the 
regulation of glycogenesis, focusing on research that examines how different types of exercise (aerobic, 
anaerobic, and resistance) affect this process. 
Method: research published between 2000 and 2023 was reviewed, using renowned scientific databases. 
Results: the findings suggest that physical exercise regulates glycogenesis through hormonal mechanisms, 
particularly the modulation of insulin, glucagon, and cortisol. 
Conclusions: additionally, variations in the response of glycogenesis based on the intensity and duration of 
exercise are highlighted. It follows that understanding the role of exercise in the regulation of glycogenesis 
is essential for the development of therapeutic strategies for the treatment of diabetes and other metabolic 
conditions.

Keywords: Physical Exercise; Glycogenesis; Glucose Metabolism; Insulin; Physical Activity; Metabolic 
Regulation.

RESUMEN

Introducción: se ha demostrado que la actividad física es un elemento crucial en la regulación del metabolismo 
de la glucosa y la glucogénesis, procesos que son fundamentales para mantener la homeostasis energética. 
El proceso de glucogénesis, que implica la generación de glucosa a partir de precursores no glucosados, es 
esencial en condiciones de ayuno prolongado y durante la recuperación después de la actividad física. 
Objetivo: el propósito de esta revisión sistemática es examinar la influencia del ejercicio físico en la 
regulación de la glucogénesis, enfocándose en investigaciones que analizan cómo diferentes tipos de ejercicio 
(aeróbico, anaeróbico y de resistencia) afectan este proceso. 
Método: se revisaron investigaciones publicadas entre 2000 y 2023, utilizando bases de datos científicas de 
renombre. 
Resultados: los hallazgos sugieren que el ejercicio físico regula la glucogénesis a través de mecanismos
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hormonales, particularmente la modulación de insulina, glucagón y cortisol. 
Conclusiones: además, se destacan las variaciones en la respuesta de la glucogénesis en función de la 
intensidad y duración del ejercicio. Se deduce que comprender el papel del ejercicio en la regulación de la 
glucogénesis es esencial para el desarrollo de estrategias terapéuticas para el tratamiento de la diabetes y 
otras condiciones metabólicas.

Palabras clave: Ejercicio Físico; Glucogénesis; Metabolismo de la Glucosa; Insulina; Actividad Física; 
Regulación Metabólica.

INTRODUCTION
Physical activity plays a fundamental role in energy metabolism, particularly in processes such as 

gluconeogenesis and glycogenesis.(1) The latter refers to the synthesis of glycogen from glucose or its precursors, 
primarily occurring in the liver and, to a lesser extent, the kidneys.(2) Its regulation is closely linked to the 
organism’s nutritional and hormonal status, with insulin and glucagon playing central roles.(3) Proper regulation 
of glycogenesis is essential for maintaining glycemic homeostasis and for preventing metabolic disorders such 
as diabetes.(4)

In the context of physical activity, glycogenesis becomes especially relevant, as it allows for the 
replenishment of energy reserves utilized during exercise.(5) Studies have shown that the intensity, duration, 
and type of exercise significantly influence glycogen dynamics in both liver and muscle tissue.(6,7) Intermittent 
or high-intensity exercise, in particular, has been associated with greater glycogen mobilization and subsequent 
synthesis, promoting beneficial metabolic adaptations.(8)

Although the relationship between physical activity and glycogen metabolism has been widely studied, 
the specific parameters—frequency, duration, and intensity—that most effectively optimize glycogenesis have 
not yet been clearly determined.(9,10,11) Moreover, individual variability in metabolic response adds complexity 
to developing general recommendations.(12,13) Recent findings indicate a curvilinear relationship between 
exercise volume and blood glucose levels, independent of exercise duration, highlighting the complexity of the 
phenomenon.(14,15,16)

From a biochemical perspective, exercise activates multiple metabolic pathways related to glycogen, 
including anaerobic glycolysis and the Cori cycle.(17,18) During and after exercise, key enzymes such as glycogen 
phosphorylase and glycogen synthase are regulated by hormonal and intracellular signals.(19,20,21) Skeletal muscle 
uses its own glycogen stores during physical activity, while the liver maintains plasma glucose through glycogen 
storage and release.(22,23) Lactate produced during exercise can be recycled by the liver and used for glycogen 
resynthesis, exemplifying the integration of energy systems.(24,25,26)

Adaptations to exercise depend not only on the type of activity but also on factors such as nutrient availability, 
training status, and hormonal environment.(27,28,29) During prolonged exercise, insulin levels decrease, while 
catecholamines, glucagon, and cortisol rise, favoring catabolic pathways that stimulate glycogen resynthesis, 
especially under conditions of energy depletion.(30,31,32,33) These responses are part of a complex physiological 
system essential for optimizing training and recovery strategies.(34,35,36,37,38)

Since no systematic review has yet integrated the evidence on how different types of physical exercise 
regulate glycogenesis,(39,40,41,42,43) the purpose of this study is to compile and analyze the current scientific 
literature, describing the molecular mechanisms involved and their clinical implications.(44,45,46,47)

METHOD
A systematic search was conducted in databases including PubMed, Scopus, and Web of Science to identify 

studies exploring the relationship between exercise training and glycogenesis. The search focused on publications 
from 2000 to 2023. Studies were selected based on the PICOS criteria:(48,49,50,51,52)

•	 Population (P): human participants and animal models.(53)

•	 Intervention (I): different modalities of physical activity or exercise training (e.g., aerobic, 
anaerobic, resistance, or interval training).(54,55)

•	 Comparison (C): pre-and post-exercise states, or between different types, intensities, or durations 
of exercise interventions.(56,57)

•	 Outcome (O): direct or indirect measurements of post-exercise glycogenesis, including biochemical, 
molecular, or metabolic markers.(58,59)

•	 Study Design (S): experimental studies (randomized or non-randomized trials), observational 
studies, and controlled laboratory studies.(60)

Only studies meeting all five criteria were included in the final review.(61,62,63)
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Inclusion Criteria
Study Design

•	 Clinical and non-clinical experimental studies.
•	 Studies assessing the effects of acute or chronic aerobic exercise.
•	 Investigations including humans or animal models.

Population
•	 Male and female participants, across all age groups (children, adults, elderly).
•	 Individuals regardless of physical activity level (active or sedentary), health status (healthy or 

sick), smoking status, or geographical origin.
•	 Studies conducted under fasting or postprandial conditions (excluding nocturnal fasting).

Intervention Characteristics
•	 Aerobic physical activity, with clearly defined exercise dose, intensity, and duration.
•	 Studies that did not require dietary modifications.

Outcome Measures
•	 Studies that included direct or indirect measurements of post-exercise glycogenesis.

Exclusion Criteria
Type of Physical Activity

•	 Studies involving anaerobic exercise or sedentary behavior as the main intervention.

Incomplete Intervention Data
•	 Studies lacking specification of exercise dose, intensity, or duration.

Design or Reporting Issues
•	 Review articles, congress proceedings, editorials, letters to the editor, and other non-peer-

reviewed publications.
•	 Duplicate articles found in one or more databases.
•	 Cohort studies without reported sample size, lacking power analysis, or sensitivity analysis.
•	 Non-clinical studies that failed to report a valid duration of intervention.

Pharmacological Interventions
•	 Studies that included pharmacological treatment without an exercise intervention.
•	 Investigations involving participants with non-exercise-related metabolic disorders (e.g., cancer).
•	 Clinical trials where the drug–food interaction was latent or not clearly reported.

Data Sources and Search Strategy
The literature search was carried out in electronic databases such as Scopus, Web of Science, and Google 

Scholar.(51) Keywords were used combined with Boolean operators, taking into account which the keywords 
were considered: glucose, glycogen, glycogenesis, glyconeogenesis, exercise and physical activity. Activity, 
in different ways, whether in portuguese, spanish or english. In addition, the reference lists of the selected 
studies were reviewed to identify additional relevant articles.(52)

Quality Assessment and Data Extraction
The methodological quality of the included studies was assessed using a checklist based on standardized 

criteria for systematic reviews.(63) Data were systematically extracted and organized into summary tables that 
included information on the study objectives, methodology, main findings, and conclusions.(64)

Data Synthesis
The extracted data were qualitatively synthesized to identify common and divergent patterns in the findings 

of the reviewed studies.(65) The data collection and non-exposure of the analysis methodology of the study’s 
exposures required that the results obtained were related to the driving time or the observed effect. Likewise, 
in the intervention studies, a reduction in the participants of the experimental program, in the cohorts, and in 
the experiments with the absence of confounding measures by variable was required.(26)

Selection Procedure
The initial database search yielded 432 articles. After screening titles and abstracts, 112 full-text articles 
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were assessed for eligibility. Finally, 43 studies met all inclusion criteria and were included in the systematic 
review. A PRISMA diagram was made to accompany this selection procedure, as seen in figure 1:

Figure 1. PRISMA Diagram

RESULTS
A comprehensive and systematic search was conducted across three major scientific databases: PubMed, 

Scopus, and Web of Science. The search aimed to identify studies published between January 2000 and 
December 2023, using a combination of controlled vocabulary (e.g., MeSH terms) and free-text keywords 
related to “glycogenesis,” “physical activity,” “exercise,” “aerobic training,” and “glucose metabolism.” 
Boolean operators and filters were applied to refine the results by language (English and Spanish), publication 
type (original research), and subject (human or animal studies).

After the initial identification phase, 432 records were retrieved. These records were exported into 
reference management software to remove duplicates. Once duplicates were handled, titles and abstracts 
of the remaining records were screened by two independent reviewers to assess their relevance. Studies that 
clearly did not meet the inclusion criteria—such as those focused on anaerobic or sedentary interventions, 
lacking exercise parameters (duration, intensity, frequency), or not involving glycogenesis—were excluded at 
this stage (n = 320).

The remaining 112 full-text articles were then retrieved for detailed assessment. Each study was evaluated 
against predefined inclusion and exclusion criteria, as established through the PICOS framework. During this 
phase, 69 studies were excluded for various reasons, including:

•	 Incomplete methodological data (e.g., missing sample size, lack of intervention detail).
•	 Absence of exercise-related intervention.
•	 Focus on pharmacological treatments without an exercise component.
•	 Involvement of metabolic conditions unrelated to physical activity (e.g., cancer).
•	 Duplicate or non-peer-reviewed publications (e.g., conference abstracts, opinion letters).

Finally, 43 studies met all inclusion criteria and were incorporated into the systematic review. These studies 
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provided both direct and indirect evidence on the effects of aerobic physical activity on the regulation of 
glycogenesis. The process was conducted following the PRISMA guidelines, ensuring a transparent, replicable, 
and methodologically sound review.

Table 1. Systematic Review

Phase of the Process Number 
of studies Description

ID

Records identified by searching 
databases (PubMed, Scopus, 
Web of Science, etc.)

432 Initial search conducted using keywords: 
“glycogenesis”, “physical exercise”, 
“glucose metabolism”, “hormonal 
regulation”, etc.

Additional records identified 
by other sources (citations, 
bibliography, etc.)

18 Relevant studies identified through review of 
references from key articles in the research.

Total number of studies 
identified

450 Total, number of studies preselected in the 
initial search phase.

Filtration  

Records after removing 
duplicates

410 Removal of 40 duplicate studies that 
appeared in multiple databases.

Records examined through titles 
and abstracts

410 Titles and abstracts were reviewed to 
identify relevant studies according to the 
inclusion and exclusion criteria.

Records excluded after initial 
review

298 Studies were excluded for not meeting 
the inclusion criteria (e.g., animal studies 
without human extrapolation, review 
articles, etc.).

Eligibility  

Full texts evaluated for eligibility 112 The full texts of the selected studies were 
reviewed in depth to confirm their relevance 
to the systematic review.

Full texts excluded (with 
reasons)

69 Reasons for exclusion: studies with 
pharmacological intervention, articles 
without direct measurements of 
glycogenesis, lack of sufficient data, etc.

Included  

Studies included in the final 
review

43 Studies that met all inclusion criteria related 
to physical exercise and glycogenesis were 
included in the analysis.

Review articles, research on individuals with metabolic conditions not associated with physical activity 
(such as cancer), and studies with pharmacological intervention without the presence of physical activity were 
excluded.

Table 2. Comparative Analysis

Studies Reference Type of 
exercise

Duration and 
intensity

Population 
studied

Effect on 
glycogenesis

Mechanism 
involved

Nicho l son 
et al.

(9) Aerobic Moderate long term 
(60 min/day)

Adults healthy Increase in hepatic 
glycogenesis during 
prolonged exercise 
to maintain stable 
glycemia.

Decreased insulin, 
increased glucagon; 
use of lactate 
and glycerol as 
precursors.

Baghersad 
et al. 

(14) A nae rob i c 
(HIIT)

High intensity, short 
duration (30 min)

Adults young, 
trained

Mild increase in post-
exercise glycogenesis 
due to rapid 
depletion of muscle 
glycogen.

P o s t - e x e r c i s e 
cortisol increase; 
mobilization of 
amino acids for 
glycogenesis.
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Ka l t s a t ou 
et al. 

(17) Resistance 
(weights)

Resistance training 
3 times/ week

Patients with 
type 2 diabetes

Improved regulation 
of glycogenesis 
and glycemic 
h o m e o s t a s i s , 
reduction in blood 
glucose levels during 
post-exercise.

Increased insulin 
sensitivity, reduced 
blood glucose, 
increased utilization 
of amino acids for 
glycogenesis.

Loustau et 
al. 

(24) A e r o b i c 
(cycling)

Moderate intensity 
(45 min/ session)

Adults sedentary I n c r e a s e d 
glycogenesis during 
moderate intensity 
exercise, promoting 
glycemic balance 
during prolonged 
sessions.

Increased glucagon 
levels; increased 
use of lactate for 
gluconeogenesis.

Tessaris et 
al.

(41) C o m b i n e d 
(aerobic and 
weights)

Moderate long term 
(60 min, 4 times/ 
week)

O v e r w e i g h t 
adults​

Increased hepatic 
glycogenesis and 
improved fatty acid 
oxidation. Stability 
in the post - exercise 
glucose levels.

Increased lipid 
oxidation; increased 
insulin sensitivity 
and decreased post-
exercise glucose 
levels.

Mc Gowan 
et al.

(50) A nae rob i c 
(HIIT)

20-30 minutes, high 
intensity

A t h l e t e s 
professionals

No significant 
increase in 
g l y c o g e n e s i s 
was observed; 
greater reliance on 
glycogenolysis rather 
than glycogenesis 
to maintain 
homeostasis.

Increased cortisol; 
greater reliance on 
muscle glycogen 
during anaerobic 
exercise.

Santiago et 
al. 

(52) L o w 
i n t e n s i t y 
aerobic​

Light exercise, 30 
minutes / session

Adults older D e c r e a s e d 
glycogenase activity, 
with greater 
dependence on lipids 
as an energy source 
in sedentary older 
adults.

Reduction of blood 
glucose; increase 
in lipid oxidation, 
reduction in the need 
for gluconeogenesis.

Mc Gee et 
al. 

(67) Resistance 
(weights)

High intensity, 3 
times / week

Women with 
insulin resistance

Moderate increase 
in glycogenesis 
during post-
exercise recovery 
to compensate for 
muscle glycogen 
depletion.

Increased use of fatty 
acids and proteins 
as precursors for 
glycogenesis.

Bond et al. (69) A nae rob i c 
(sprint)

High intensity, short 
duration

Adults young 
people, amateur 
athletes

Stimulation of 
glycogenesis during 
exercise due to rapid 
glycogen depletion.

Increased levels 
of cortisol and 
glucagon; increased 
mobilization of 
amino acids for 
gluconeogenesis.

The table shows how different types of exercise (aerobic, anaerobic, and resistance) influence the 
regulation of glycogenesis in different ways.(48)  Studies highlight how intensity, duration, and metabolic status 
of participants (metabolic health, age, previous training) affect the activation of glycogenesis.(49)

China establishes itself as the predominant entity in document production, producing more than twice as 
many documents compared to the second country, the United States.

The participation of other countries is significantly lower, and some show reduced document production 
compared to China and the United States. This graph highlights the disparity in document generation between 
different territories, with a significant prevalence in China.(50)

This chart could represent a variety of circumstances, such as each nation’s investment in research and 
development, the number of active academic institutions, or the emphasis on scientific publication in those 
regions. The notable distinction between China and other territories could be attributed to the high investment 
in research and science in that nation during recent years.(51)
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Figure 2. Documents by territory

DISCUSSION
The findings of this systematic review suggest that physical activity plays an effective role in regulating 

glycogenesis, acting through various hormonal and metabolic pathways.(52) The intensity and duration of 
physical activity are determining elements that influence the level of activation of glycogenesis.(53) Although 
aerobic exercise promotes sustained regulation of glycogenesis, anaerobic exercise elicits faster and more 
acute responses, suggesting that various exercise modalities can be used therapeutically depending on the 
metabolic needs of individuals.(54,55)

In individuals diagnosed with type 2 diabetes, modulation of glycogenesis through physical activity is 
presented as an efficient strategy to optimize glycemic control and minimize the likelihood of metabolic 
complications.(56) However, it is imperative to adopt an individualized approach that takes into account the 
patient’s physical condition and their respective metabolic responses to physical activity.(57)

The object of study in this systematic review is the role of physical activity in the regulation of glycogenesis, 
which refers to the biochemical process through which glucose molecules are converted and stored as glycogen 
in the liver and muscle tissues. The literature analyzed consistently demonstrates that physical exercise is 
a critical modulator of glycogenesis, acting through a complex interplay of hormonal signals (e.g., insulin, 
glucagon) and metabolic adaptations that depend on exercise type, intensity, and duration.

Under physiological conditions, during mild to moderate intensity exercise, skeletal muscle primarily uses 
intracellular triglyceride-free fatty acids as its main energy source, minimizes glycogen consumption, and 
reduces tissue glucose utilization.(58,59)  In contrast, during high-intensity exercise, a significant proportion of 
the available energy is derived from blood glucose and muscle glycogen, in addition to mainly adipocyte-
derived fatty acids.

Concomitantly, due to the intensification of post-exercise hepatic glycogen synthesis in skeletal muscle,  
plasma glucose uptake is promoted, which reduces hepatic gluconeogenesis and favors the use of amino 
acids to complete the support of muscle metabolism.(60,61) Currently, an increase has been recorded in the 
prevalence of individuals with some chronic pathology on a global scale.(62) Although a significant increase has 
been observed in the prevalence of chronic diseases associated with low-middle income levels in developed 
countries, morbidity and mortality have experienced an almost identical increase due to non-communicable 
chronic diseases. For example, in 2005, the prevalence was estimated to be approximately 22 % in men and 23 
% in women.(63,64) 

The decrease in the practice of physical activity, also called physical inactivity, promotes the manifestation 
and aggravation of chronic pathologies. (65) Based on the historical progression of the discovery of the R 
phenomenon and its relevance in the physiology of physical exercise, the purpose of this study was to carry out 
a systematic review of research in which the influence of physical exercise on the regulation of glycogenesis 
will be examined. (66)

The beneficial impact of physical exercise in the prevention and treatment of metabolic conditions such 
as type 2 diabetes, non-alcoholic fatty liver disease, and obesity, among others, has been clearly established. 
These conditions are linked to metabolic imbalances between anabolism, which predominates over catabolism, 
and their respective pathways. The intricate network that regulates energy metabolism is gaining relevance 
and arousing growing interest in pathologies linked to its disturbance. (67,68,69)
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While the general findings clarify the clinical and metabolic outcomes, the underlying biochemical 
mechanisms offer deeper insight into how exercise influences glycogen metabolism at the cellular level. 
Glycogenesis is regulated primarily through the activation of glycogen synthase (GS) and the inhibition of 
glycogen phosphorylase (GP)—two enzymes tightly controlled by hormonal signals and intracellular energy 
status. During exercise, especially of moderate to high intensity, increased AMP and Ca²⁺ concentrations in 
muscle cells signal a higher energy demand.(70,71,71) This initially stimulates glycogen breakdown (glycogenolysis) 
via phosphorylase kinase activation, but post-exercise, insulin-mediated pathways become dominant.(61,65,66)

Insulin binds to its receptor on muscle and liver cells, activating PI3K-Akt signaling, which promotes glycogen 
synthase dephosphorylation via protein phosphatase-1 (PP1), thus facilitating glycogen synthesis. Concurrently, 
glucose transporter type 4 (GLUT4) is translocated to the muscle cell membrane, increasing glucose uptake. 
Exercise itself independently promotes GLUT4 expression through AMPK activation, reinforcing this process 
even in the absence of insulin, a critical adaptation for insulin-resistant individuals.(62,64)

Moreover, high-intensity exercise increases lactate production, which can enter the Cori cycle, where 
lactate is converted back into glucose in the liver and re-stored as glycogen—an energy-conserving loop 
especially relevant in intermittent or resistance training. The interplay between AMPK, mTORC1, and PGC-1α 
also modulates mitochondrial biogenesis and energy balance, influencing the long-term regulation of glycogen 
metabolism.(58,59,60)

CONCLUSIONS
This systematic review highlights that physical exercise plays a key role in the regulation of glycogenesis, 

mainly through hormonal signaling and energy balance adaptations during and after activity. The effect varies 
depending on the type, intensity, and duration of exercise, reinforcing the importance of individualized exercise 
prescriptions—particularly for metabolic disorders such as type 2 diabetes.

Although the review consolidates valuable findings from both human and animal studies, the lack of a 
statistical meta-analysis limits the ability to quantify these effects across contexts. Moreover, heterogeneity 
among studies—in terms of experimental design, subject characteristics, and outcome measures—hampers 
direct comparison and synthesis.

At the molecular level, discrepancies in enzymatic responses may relate to protein isoforms, post-
translational modifications, and the influence of metabolites and cofactors. These mechanistic pathways 
remain insufficiently clarified and warrant further research.

In conclusion, physical activity—especially when appropriately tailored—appears to significantly modulate 
glycogen-related metabolic pathways, offering potential therapeutic value. However, future studies are needed 
to define precise parameters (intensity, duration, recovery) and to elucidate biochemical mechanisms more 
clearly, ideally through standardized methodologies and clinical trials.
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