
Arquitectura de microservicios en Azure para la recuperación automatizada de 
incidentes 

Salud, Ciencia y Tecnología. 2025; 5:1865
doi: 10.56294/saludcyt20251865

ORIGINAL

Microservices architecture in Azure for automated incident recovery

Juan Camilo Giraldo Mejia1
  , Fabio Alberto Vargas Agudelo1

  , Alejandro Restrepo Correa1 
  , Alicia 

Martínez Rebollar2
   

ABSTRACT

Nowadays, more organizations incorporate microservices in the implementation of their solutions. However, 
despite its benefits, this technological strategy poses challenges in incident recovery, since a failure in one 
component can quickly affect the entire system, making response capacity crucial to reduce downtime. This 
article proposes a microservices structure in Azure with the objective of optimizing incident recovery. The 
findings indicate that this structure makes it possible to significantly reduce the recovery time of critical 
incidents and improves the availability of the services offered through API Management.

Keywords: Azure; Microservices; Incident Recovery; Microservices Architecture.

RESUMEN

En la actualidad son más las organizaciones que incorporan microservicios en la implementación de sus 
soluciones. No obstante, a pesar de sus beneficios, esta estrategia tecnológica plantea desafíos en la 
recuperación de incidentes, dado que una falla en un componente puede afectar de manera rápida todo el 
sistema, lo que hace crucial la capacidad de respuesta para reducir el tiempo de inactividad. Este artículo 
propone una estructura de microservicios en Azure con el objetivo de optimizar la recuperación de incidentes. 
Los hallazgos señalan que esta estructura posibilita disminuir significativamente el tiempo de recuperación 
de incidentes críticos y mejora la disponibilidad de los servicios ofrecidos mediante la Administración de API.

Palabras clave: Azure; Microservicios; Recuperación de Incidentes; Arquitectura de Microservicios.

INTRODUCTION
Nowadays, more organizations are incorporating microservices into the implementation of their solutions.

(1) Microsoft Azure stands out for its improvements in infrastructure management.(2) 
However, despite the inherent benefits of these technologies, the growing interconnection and distribution 

of system components introduce new challenges, particularly in the area of incident recovery. A failure in an 
individual microservice or underlying infrastructure component can spread quickly, affecting the availability 
and performance of the entire application.(3) The ability to respond effectively to these incidents, minimizing 
downtime and ensuring business continuity, becomes a critical priority for modern organizations.

Faced with this problem, the goal is to optimize the incident recovery procedure in infrastructures, 

© 2025; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original 
sea correctamente citada 

1Tecnológico de Antioquia – Institución Universitaria, Antioquia. Medellín, Colombia.
2TECNM /Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, México.

Cite as: Giraldo Mejia JC, Vargas Agudelo FA, Restrepo Correa A, Martínez Rebollar A. Microservices architecture in Azure for automated 
incident recovery. Salud, Ciencia y Tecnología. 2025; 5:1865. https://doi.org/10.56294/saludcyt20251865

Submitted: 13-01-2025          Revised: 28-03-2025          Accepted: 08-07-2025          Published: 09-07-2025

Editor: Prof. Dr. William Castillo-González 

Corresponding author: Juan Camilo Giraldo Mejia 

https://doi.org/10.56294/saludcyt20251865
https://orcid.org/0000-0002-6564-3029
mailto:jgiraldo1@tdea.edu.co?subject=
https://orcid.org/0000-0002-6921-4918
mailto:fvargas@tdea.edu.co?subject=
https://orcid.org/0009-0009-9651-3145
mailto:arestrepoco@outlook.com?subject=
https://orcid.org/0000-0002-1071-8599
mailto:alicia.mr@cenidet.tecnm.mx?subject=
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/saludcyt20251865
https://orcid.org/0000-0003-3007-920X
mailto:jgiraldo1@tdea.edu.co?subject=


https://doi.org/10.56294/saludcyt20251865

providing solutions that facilitate monitoring, management, and automation. In this way, companies will have 
an architecture capable of overcoming the difficulties that arise in the cloud.

According to Lenk A.(4), organizations must plan and establish strategies for recovery from technological 
incidents and disasters. Protecting the IT infrastructure is essential to ensure its efficient operation. 
Complementing this, Aksakalli et al.(5) note that resource shortages can complicate operations, thereby 
increasing response times and workload.

The article is structured as follows: Section 1 presents an overview of related work on cloud incident 
mitigation and management. Section 2 presents the methodology applied to create the architecture. Section 3 
presents the results obtained. Section 4 presents the discussion and concludes with the results.

Related work 
Aftab SA et al.(6) present a model-based framework for automating the provision of virtualized services and 

applications in cloud infrastructure. It features a master service orchestrator, a software-defined network 
controller, and an application controller to retrieve storage files and extract configuration templates, ensuring 
proper configuration and allocation of resources in data centers and addressing the first operator’s time 
responsibility. 

Ray K(7) presents an integration of components to create the incident response flow, establishing the 
necessary assets for the process. All of this is managed from an information repository that allows the inputs 
needed to be managed, ensuring the workflow runs efficiently. 

Guo D et al.(8) propose an automatic system that eliminates the need for manual intervention in the 
configuration and generation of virtual resources. This is achieved by calling virtual machine information, 
shared storage, and floating IP addresses, which, in short, improves data security and integrity.

Li X et al.(9) present an automatic repair system designed to enhance the resilience of cloud applications. 
This adaptable and customizable system integrates with cloud management tools, enabling it to work 
seamlessly with a wide range of applications, from the most modern to those utilizing older technologies, 
such as network function virtualization (NFV). Designed to operate with OpenStack, it aims to provide a robust 
solution for companies, particularly in the telecommunications sector, to manage the status and recovery of 
their applications efficiently. The primary objective is to optimize cloud services and reduce administrator 
workload by automating problem resolution, thereby enhancing reliability. In essence, this automatic repair 
method highlights the importance of systems that effectively detect and correct faults, which, according to the 
authors, will significantly increase the reliability and performance of cloud applications.

Shamsuddeen et al.(10)  propose an autonomous system that distributes workloads among microservices, 
mimicking decentralized management behavior. This system aims to enhance performance compared to 
centralized orchestrations by optimizing resource utilization and overall efficiency. Additionally, it emphasizes 
the significance of automated orchestration for deploying, scaling, and testing microservices. In summary, the 
study proposes an innovative approach to managing workloads in microservices, emphasizing autonomy and 
performance improvements in cloud environments to address the challenges posed by centralized systems.

As a result of this research, an algorithm is proposed, consisting of a two-step configuration cycle: creation 
(establishing initial connections) and Link/Unlink (connecting or disconnecting services as needed). To 
demonstrate their proposal, they created a tool that generates plans for real microservice architectures, 
modeled with the Abstract Behavior Specification (ABS) programming language. In conclusion, the authors 
simplify the practices of automatic microservice implementation and demonstrate that, despite the complexity 
of the problem, it can be effectively solved with the proposed methods and tools, helping to optimize resources 
and prevent issues during implementation.(11)

Beloki’s book,(12)  “The Art of Site Reliability Engineering,” is an essential guide to the principles and 
practices of Site Reliability Engineering (SRE), highlighting the importance of reliability for user satisfaction. It 
describes best practices for designing robust software architectures that support failures. The book focuses on 
implementing applications using Microsoft Azure’s Infrastructure as a Service (IaaS) and Platform as a Service 
(PaaS). It also discusses the use of microservices, valued for their scalability and flexibility. A central theme is 
the creation of resilient applications that can handle unexpected problems without significant interruptions, 
which is a fundamental pillar of SRE. In summary, the book aims to educate readers on the fundamentals of SRE, 
architectural strategies for resilience, and their practical application through Azure cloud services.

Chaplia O and Klym H(13) propose an architecture for automatic self-healing based on microservices.   Its 
purpose is to strengthen the fault tolerance of cloud microservices and ensure process flow.

Karn et al.(14) focus on the growing popularity of microservices, which, by dividing applications into small, 
connected components, complicate the network. They highlight that a failure in one microservice can spread 
and compromise the entire application, making rigorous testing of connection resilience essential. The authors 
propose a language- and architecture-independent system for testing and improving this resilience, helping 
administrators identify the cause of failures. The study demonstrates how Istio, a service mesh, is utilized to 

 Salud, Ciencia y Tecnología. 2025; 5:1865  2 

ISSN: 2796-9711



control communication and simulate failures, while Locust is employed to simulate high user loads. For fault 
detection, tools such as Jaeger and Grafana are used, and for resolution, temporary backup connections, 
microservice scaling, and the use of “circuit breakers” are proposed to prevent saturation. Finally, a practical 
demonstration with the e-commerce application Hipster Shop on Kubernetes validates the effectiveness of the 
proposed system. In summary, the paper outlines the challenges of microservices, presents solutions using Istio, 
and explains how this research enhances application resilience.

METHOD
Phases for creating the Azure API Management Recovery and Backup Architecture.

Phase I: Comparative analysis of the reviewed work
Technology recovery and automation are fundamental pillars of modern IT management, especially in cloud 

computing environments and microservice architectures. Although the different works presented address 
these areas from different perspectives, they share a common goal: to ensure business continuity and system 
resilience.

Key similarities between the works
One of the most notable similarities is the focus on automation for disaster recovery and service management. 

Works such as (9,15,16) propose frameworks and systems that eliminate manual intervention in critical processes, 
including service provisioning, recovery system deployment, and application repair. This automation is viewed 
as a means to enhance efficiency, minimize human error, and expedite response times.

Resource optimization and operational efficiency are cross-cutting objectives (17) for resource allocation and 
workload distribution.

Differences and specific approaches
•	 Scope and granularity of recovery: Lenk A and Ray K(4,7) propose an incident response architecture 

that articulates resource specifications for the proper execution of system recovery in the event of 
situations that affect process flow. The ability of applications to repair themselves automatically is 
highlighted.(9)

•	 Type of automation: Aftab SA et al.(15) propose a model-based framework for automating virtualized 
service provisioning and orchestration, focusing on the proper configuration of resources.(16) It focuses on 
the automatic implementation of recovery systems in cloud platforms, eliminating manual intervention 
in the configuration of virtual resources. The difference lies in whether automation is applied to initial 
provisioning and orchestration, or specifically to the activation of a recovery system.

•	 Application context: while some work focuses on IT recovery in a broad sense,(4,7) others specialize 
in cloud environments (6,8,9,13,14) and microservices.(10,11,12,13,14) This reflects the evolution of IT infrastructure 
and the need for specialized solutions tailored to these architectures.

•	 Resilience mechanisms: Beloki U(12) explores the principles of Site Reliability Engineering (SRE) and 
resilient architectures in Azure, providing comprehensive guidance on how to build robust applications.
(14) focus on automated testing and the resilience of microservice networks with Istio, using specific 
tools to simulate failures and improve communication between microservices. The differences lie in the 
methodology for achieving resilience, whether through design principles or testing and traffic control 
tools.

•	 Workload management: Shamsuddeen R et al.(10) propose an autonomous system for workload 
distribution in containerized microservices, mimicking the behavior of a swarm for decentralized 
management. This is a more specific concern within the realm of microservice resilience and performance. 

All of the work converges on the importance of recovery and resilience in the IT sector. Still, it differs in 
its scope, the type of automation proposed, the specific technological context (cloud, microservices), and the 
particular mechanisms employed to achieve its goals. The general trend is toward increasingly automated and 
self-healing systems, especially in the dynamic environment of cloud computing and microservice architectures.

Phase II: identified issues
Fault Management and Resilience in Cloud Applications and Microservices

In microservice architectures, a failure in one component can propagate and compromise the entire 
application, making rigorous testing of network connection resilience essential.(14) Cloud applications, 
particularly in telecommunications environments, require robust self-healing systems to effectively detect and 
correct failures, as well as optimize services.(9)

 3    Giraldo Mejia JC, et al

https://doi.org/10.56294/saludcyt20251865 ISSN: 2796-9711



https://doi.org/10.56294/saludcyt20251865

Decentralized Workload Management
Centralized orchestration systems can be inefficient; autonomous distribution of workloads across containerized 

microservices seeks to improve performance and efficiency compared to centralized orchestrations.(10)

Challenges in Microservice Implementation
Although microservices offer scalability and flexibility, their automatic implementation is a complex problem.

(11) This requires specialized methods and tools to optimize resources and prevent issues during deployment.

Ensuring Reliability and High Availability
The critical need for high availability and self-healing in cloud applications poses a significant challenge to 

ensuring service continuity, particularly in vital sectors such as banking and healthcare.(13)

Phase III: Proposed solution to the problem 
Taking into account the needs of organizations seeking robust solutions to efficiently address and recover 

from incidents, we propose an API Management architecture supported by Azure. The solution is designed based 
on the problems identified in the literature review, and the following elements are proposed to structure it.

•	 Platform that supports cloud services
•	 Service that manages access to the platform
•	 Service that automates and controls tasks
•	 Service to create and control workflows
•	 Resource status monitoring and analysis service
•	 Service for creating and managing APIs
•	 Data storage service

RESULTS
Proposed architecture

In this solution, Azure technology is used as a centralized identity and enterprise policy management system, 
enabling unified employee access to applications, including authorization to API disaster recovery components. 

Its main objective is to back up API containers and, if there is a problem or human error, recreate the 
infrastructure using code and quickly launch the APIs so that the service is back up and running as soon as 
possible.

The proposed solution is based on pay-per-use technologies offered by Microsoft Azure, see figure 1. 

Figure 1. Architecture components

Architecture elements and functionalities 
Azure Cloud: a platform that supports Microsoft cloud services. 
Azure AD Manage Identity: a service that manages identities and access in Azure. 

 Salud, Ciencia y Tecnología. 2025; 5:1865  4 

ISSN: 2796-9711



Key Vault: key and secret management service in Azure. 
Automation account: Task automation service in Azure. 
Logic Apps: A Service for creating automated workflows in Azure. 
Azure Monitor: Resource monitoring and analysis service in Azure. 
Storage account: Data storage service in Azure. 
API Management: Service for creating, publishing, and managing APIs in Azure.

Azure EntraID (formerly Azure Active Directory) is a corporate identity provider widely used in the business 
world for centralized user management and policy assignment. This enables all employees to access the 
company’s various applications using the same corporate username and password. In this case, it is used to 
access and authorize API disaster recovery components.

The key store is used to securely store and consume the secret (password) of an identity (service principal) 
used to take copies of APIs. This store also stores connection strings that can be used to consume other APIs or 
database components.

Figure 2 shows the business solution to a massive failure, characterized by an automated flow of activities. 
By eliminating manual intervention, the risks of errors associated with service provider actions are minimized. 
Additionally, the comprehensive recovery of all components in a single process is ensured, resulting in a 
significant reduction in restoration times and, consequently, increased application availability.

Figure 2. Automated business flow

Access and authorization: access is granted at the Azure AD level (Sign-in ID) with a corporate username 
and password with multi-factor authentication, an access module, and modules depending on the assigned 
permission level.

Security: includes a permissions module and storage for sensitive application data.
Storage: module where backup files are physically stored.
Automation: automation account module to view the scripts executed by the tool, manual execution, or 

code modification.

Flow specification 
Figure 3 illustrates the user’s journey when interacting with the solution. Access is possible from any device 

connected to the internet, such as computers, tablets, or mobile phones. Login is performed with the client’s 
corporate credentials, adhering to established access policies. The permissions assigned vary according to the 
user profile and can be read-only, collaboration, or full administration. Within the portal, the user can interact 
with the APIs (at the container level), manage automation, configure monitoring alerts, review performance 
graphs, or verify the correct frequency of data storage.

 5    Giraldo Mejia JC, et al

https://doi.org/10.56294/saludcyt20251865 ISSN: 2796-9711



https://doi.org/10.56294/saludcyt20251865

Figure 3. User interaction flow

DISCUSSION
Tests on the proposed architecture demonstrate a reduction in the time required to respond to incidents, 

overcoming high workloads in decentralized management.  It is a scalable and flexible solution that overcomes 
problems presented in works such as that of Bravetti M.(11) In addition, it demonstrated high reliability and 
availability, easily adapting to any scope, sector, or area, as seen in the work of Chaplia O and Klym H.(13)

CONCLUSIONS 
•	 Organizations must deploy efficient and reliable microservice systems in the cloud for disaster 

recovery purposes. They must have the ability to detect and respond to failures quickly, enabling rapid 
recovery and minimizing the impact on users and the organization’s operations. 

•	 Azure microservices offer the inherent advantages of microservices, such as fault isolation, 
redundancy, and isolated deployment.  This facilitates monitoring, automation, and availability, resulting 
in more capable systems that ensure the organization’s dynamics and its applications remain available.

•	 Automation is established as a fundamental pillar for improving operational resilience and 
incident recovery efficiency, especially in cloud and microservice environments. The architectural 
proposal demonstrates how eliminating manual intervention in critical processes—from provisioning and 
orchestration to repair and API backup—significantly reduces human error and speeds up response times. 
Automated orchestration of backup and restore tasks, facilitated by services such as Azure Automation 
Account and Logic Apps, is essential for achieving comprehensive and rapid recovery from massive 
failures.

REFERENCES
1. Newman S. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media; 2020.

2. Microsoft. Azure Well-Architected Framework [Internet]. 2024. Disponible en: https://learn.microsoft.
com/en-us/azure/architecture/framework/ 

3.  Vogels W. A Decade of Amazon’s CTO: The 10 Lessons. ACM Queue. 2016;14(7).

4.  Lenk A. Cloud Standby deployment: a model-driven deployment method for disaster recovery in the 
cloud. In: 2015 IEEE 8th International Conference on Cloud Computing; 2015 Jun 27-Jul 2; New York, NY, USA. 
Piscataway (NJ): IEEE; 2015. p. 933-40. doi: 10.1109/CLOUD.2015.127.

5. Aksakalli IK, Celik T, Can AB, Tekinerdogan B. A model-driven architecture for automated deployment of 
microservices. Applied Sciences. 2021;11(20):9617. doi: 10.3390/app11209617.

6. Aftab SA, Jana R, Farooqui K, Murray JF, Gilbert ME, inventores; U.S. Patent and Trademark Office, 
asignatario. U.S. Patent No. 11,223,536. 11 de enero de 2022.

7.  Ray K, inventor. Automatic system disaster recovery. European Patent Office, applicant. Patent 
WO2017066383A1. 2017 Apr 20.

8. Guo D, Wang W, Zeng G, Wei Z. Microservices architecture based cloudware deployment platform for 
service computing. In: 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE); 2016 Mar 27-Apr 

 Salud, Ciencia y Tecnología. 2025; 5:1865  6 

ISSN: 2796-9711

https://learn.microsoft.com/en-us/azure/architecture/framework/
https://learn.microsoft.com/en-us/azure/architecture/framework/


1; Oxford, UK. Piscataway (NJ): IEEE; 2016. p. 358-63. doi: 10.1109/SOSE.2016.22.

9.  Li X, Li K, Pang X, Wang Y. An orchestration based cloud auto-healing service framework. In: 2017 IEEE 
International Conference on Edge Computing (EDGE); 2017 Jun 25-30; Honolulu, HI, USA. Piscataway (NJ): IEEE; 
2017. p. 190-3. doi: 10.1109/IEEE.EDGE.2017.33.

10.  Shamsuddeen R, Rabiu S, Abba A, Abubakar MA. Autonomous workload distribution for container-based 
micro services environments. World Journal of Advanced Engineering Technology and Sciences. 2023 [cited 2025 
Jun 3];9(2):[about 7 p.]. Available from: https://doi.org/10.30574/wjaets.2023.9.2.0226

11.  Bravetti M, Giallorenzo S, Mauro J, Talevi I, Zavattaro G. Optimal and Automated Deployment for 
Microservices. In: Service-Oriented Computing – ICSOC 2018 Workshops: WESOA, CSB, DC4SCC, FOCAS, IFCT, 
IWSOA, SMGS, and WoC. Proceedings; 2019. Cham (Switzerland): Springer; 2019. p. 351–68. (Lecture Notes in 
Computer Science; vol 11424). doi: 10.1007/978-3-030-16722-6_21.

12. Beloki U. The art of site reliability engineering (SRE) with Azure: building and deploying applications that 
endure. New York (NY): Apress; 2022. doi: 10.1007/978-1-4842-8704-0.

13. Chaplia O, Klym H. An approach for automatic self-recovery for a Node.js microservice. In: 2023 13th 
International Conference on Dependable Systems, Services and Technologies (DESSERT); 2023 Oct; Athens, 
Greece. Piscataway (NJ): IEEE; 2023. p. 1-4. doi: 10.1109/dessert61349.2023.10416461.

14. Karn RR, Das R, Pant DR, Heikkonen J, Kanth RK. Automated Testing and Resilience of Microservice’s 
Network-link using Istio Service Mesh. In: 2022 31st Conference of Open Innovations Association (FRUCT); 2022 
Apr 27-29; Helsinki, Finland. Piscataway (NJ): IEEE; 2022. p. 79-88. doi: 10.23919/FRUCT54823.2022.9770890.

15. Aftab SA, Jana R, Farooqui K, Murray JF, Gilbert ME, inventors; U.S. Patent and Trademark Office, 
assignee. Single, logical, multi-tier application blueprint used for deployment and management of multiple 
physical applications in a cloud environment. US Patent 11,223,536. 2022 Jan 11.

16. Guo D, Wang W, Zeng G, Wei Z. Microservices architecture based cloudware deployment platform for 
service computing. In: 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE); 2016 Mar 29-Apr 
2; Oxford, UK. Piscataway (NJ): IEEE; 2016. p. 358-63. doi: 10.1109/SOSE.2016.22.

17. Aksakalli IK, Celik T, Can AB, Tekinerdogan B. A model-driven architecture for automated deployment of 
microservices. Applied Sciences. 2021;11(20):9617.

18. Lenk A. Cloud Standby deployment: a model-driven deployment method for disaster recovery in the 
cloud. In: 2015 IEEE 8th International Conference on Cloud Computing (CLOUD); 2015 Jun 27-Jul 2; New York, 
NY, USA. Piscataway (NJ): IEEE; 2015. p. 933-40. doi: 10.1109/CLOUD.2015.127.  

FUNDING
None.

CONFLICT OF INTEREST
None.

AUTHOR CONTRIBUTION
Conceptualization: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía, Alicia Martínez Rebollar.
Data collection and analysis: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía.
Formal analysis: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía.
Research: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía, Alejandro Restrepo Correa, Alicia Martínez 

Rebollar.
Methodology: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía.
Project management: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía.
Resources: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía.
Architecture: Fabio Alberto Vargas, Juan Camilo Giraldo Mejia, Alejandro Restrepo Correa.
Supervision: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía.
Validation: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía, Alejandro Restrepo Correa, Alicia Martínez 

 7    Giraldo Mejia JC, et al

https://doi.org/10.56294/saludcyt20251865 ISSN: 2796-9711



https://doi.org/10.56294/saludcyt20251865

Rebollar.
Writing – original draft: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía, Alejandro Restrepo Correa.
Writing – review and editing: Fabio Alberto Vargas, Juan Camilo Giraldo Mejía, Alejandro Restrepo Correa.

 Salud, Ciencia y Tecnología. 2025; 5:1865  8 

ISSN: 2796-9711


	Marcador 1
	_GoBack

