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ABSTRACT

Introduction: mechanical gears are essential components in power transmission in industrial, automotive 
and aerospace systems. 
Objective: advanced optimization of mechanical gear design is explored using multivariate statistical 
modeling, with a focus on structural strength and wear mitigation. 
Method: the NSGA-II algorithm was applied to identify optimal solutions on the Pareto front, balancing wear 
minimization and mechanical strength maximization. 
Results: the results indicate that a modulus close to 5,0 and a pressure angle of 24°-25° optimize durability 
and gear efficiency. In addition, linear regression showed a high predictive ability (R²=0,882 for wear and 
R²=0,963 for strength), although limited to a single-objective approach. 
Conclusions: it is concluded that the combination of NSGA-II with statistical models and numerical simulation 
can improve the accuracy and applicability of solutions in industrial environments. 

Keywords: Wear; Modeling; Multivariate; Optimization; Strength. 

RESUMEN

Introducción: los engranajes mecánicos son componentes esenciales en la transmisión de potencia en 
sistemas industriales, automotrices y aeroespaciales. 
Objetivo: se explora la optimización avanzada del diseño de engranajes mecánicos mediante modelado 
estadístico multivariable, con un enfoque en la resistencia estructural y la mitigación del desgaste. 
Method: se aplicó el algoritmo NSGA-II para identificar soluciones óptimas en el frente de Pareto, equilibrando 
la minimización del desgaste y la maximización de la resistencia mecánica. 
Resultados: los resultados indican que un módulo cercano a 5,0 y un ángulo de presión de 24°-25° optimizan 
la durabilidad y la eficiencia del engranaje. Además, la regresión lineal mostró una alta capacidad predictiva 
(R²=0,882 para el desgaste y R²=0,963 para la resistencia), aunque limitada a un enfoque monoobjetivo. 
Conclusiones: se concluye que la combinación de NSGA-II con modelos estadísticos y simulación numérica 
puede mejorar la precisión y aplicabilidad de las soluciones en entornos industriales. 

Palabras claves: Desgaste; Modelado; Multivariado; Optimización; Resistencia. 
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INTRODUCTION
Mechanical gears are essential for power transmission in industrial, automotive, and aerospace systems. 

Their optimal design balances mechanical strength, durability, and efficiency while minimizing wear, fatigue, 
and fracture failures. In recent years, statistical modeling has emerged as a powerful tool for optimizing these 
parameters, integrating numerical analysis, finite element analysis (FEA), and experimental approaches to 
predict and improve gear behavior under load.(1)

Evolution of gear design
Initially, gears were manufactured using traditional machining techniques, which limited their efficiency 

and performance. The advent of computer-aided design (CAD) and computational methods in the late 20th 
century marked a significant turning point. Engineers began to use advanced modeling techniques to analyze 
gear strength and dynamic health, incorporating statistical methods to optimize design parameters such as 
transmission ratio, torque, and material properties.(2)

Integrating metaheuristic algorithms further expanded the design space, enabling the exploration of complex 
geometries and topologies that surpass traditional optimization approaches.(3)

In particular, this field has faced challenges, including the effective detection of gear failures and the 
reliability of statistical models for predicting performance under variable conditions.(4) Concerns regarding the 
adequacy of existing reliability factors and the computational demands of optimization algorithms also present 
obstacles.(5) However, advances in materials science and innovative manufacturing technologies are expected 
to reshape the future of gear design, emphasizing sustainability and improved predictive capabilities.

The optimization of mechanical gear design has a rich history rooted in the evolution of engineering practices 
and technological advances. Early gear designs focused primarily on functionality, but over time, the emphasis 
shifted towards improving efficiency, reducing noise, and increasing reliability through systematic approaches.(6)

Computer-aided engineering methodologies have been instrumental in revolutionizing gear design. By 
incorporating statistical reliability analysis, gear designers can anticipate and mitigate potential failure modes, 
increasing durability and operational efficiency.(7)

Recent advances in metaheuristic optimization algorithms, such as genetic algorithms and simulated 
annealing, have further expanded the design space, enabling the exploration of complex and the identification 
of innovative solutions that surpass traditional design approaches.(8)

Despite these advances, mechanical gear design optimization faces ongoing challenges, including accurate 
gear failure detection, the reliability of statistical models for predicting performance under variable conditions, 
and the computational demands of optimization algorithms.(9)

The role of statistical methods
The integration of statistical methods into machine design has been fundamental. In the 2010s, research 

focused on applying statistical reliability analysis and predictive modeling to evaluate gear performance under 
variable operating conditions. This proactive approach enabled engineers to predict failure modes and optimize 
gear systems to improve durability and efficiency.(10)

Using advanced statistical techniques, designers could analyze large amounts of data to identify critical 
factors affecting wheel performance and reliability, leading to more robust and reliable designs.(11)

Advances in optimization techniques
As the field progressed, several optimization algorithms emerged, including Genetic Algorithms (GA), 

Simulated Annealing, and Ant Colony Optimisation. These methods leveraged the principles of natural selection 
and evolutionary biology to discover optimal or near-optimal gear designs amid complex parameters.(12)

These algorithms’ flexibility and computational power allowed for the exploration of innovative gear 
topologies and geometries, leading to solutions that surpassed traditional designs. The focus on improving gear 
efficiency led to innovations such as using straight bevel gears, significantly improving operational performance, 
and reducing noise levels in industrial applications.(13)

In mechanical engineering, the durability and efficiency of gears are crucial factors that define the success of 
any application. As technology advances, the need for more efficient and durable systems becomes increasingly 
apparent.(14)

NSGA-II: A Multi-Objective Optimisation Algorithm
The NSGA-II algorithm is one of the most widely used methodologies for multi-objective optimization, thanks 

to its ability to find optimal solutions to problems with conflicting objectives. Unlike traditional optimization 
methods, NSGA-II uses a genetic evolution-based approach to evaluate and improve a population of potential 
solutions over multiple generations.(15)

The efficiency of the NSGA-II algorithm lies in its non-strict dominance ranking mechanism, which allows 
solutions on the Pareto front to be identified, i.e., those that cannot be improved in one objective without 
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worsening another.(16) This algorithm has been widely used in engineering design problems, including gears’ 
structural and mechanical optimization, aiming to minimize wear and maximize strength.(17)

One of the main challenges in implementing NSGA-II is the correct formulation of the objective functions 
and constraints since unfeasible values can generate unviable solutions with extreme results, such as infinite 
wear rates or negative resistances.(18)

Normalization and penalization techniques for unfeasible solutions are recommended to ensure their 
effectiveness, preventing the algorithm from exploring regions of the search space with no physical meaning. 
In addition, the performance of NSGA-II can be improved by hybridization with other methods, such as Particle 
Swarm Optimisation (PSO) or Simulated Annealing (SA), allowing for more efficient solution space exploration.(19)

In optimizing mechanical gear design, NSGA-II has effectively balanced multiple performance criteria, 
including mechanical efficiency, service life, and energy consumption.(20) Recent studies have applied this 
algorithm to designing gearboxes and transmission trains, reducing wear by more than 15 % without compromising 
load capacity.

To obtain realistic results, it is essential to combine NSGA-II with robust predictive models, such as those 
obtained through statistical regression and finite element analysis (FEM), which can provide more reliable and 
applicable solutions in industrial environments.(21)

This article focused on improving the durability and efficiency of mechanical gears by identifying key design 
parameters. Techniques and methodologies for analyzing and optimizing these parameters will be explored to 
reduce wear, increase service life, and improve the overall performance of gear systems.

METHOD
Statistical Modelling in Gear Design

Statistical modelling was performed using objective functions such as contact stresses to determine bending 
stresses and operating temperature. Similarly, they proposed a parametric method based on finite elements 
to optimize drive shafts in speed reducers with cylindrical gears. Their model incorporated a parameterized 
database and statistical analysis to evaluate fatigue resistance and stiffness.

Strength Analysis
Numerical simulation was used to evaluate crack propagation in gears under cyclic loads, using statistical 

models to correlate parameters such as crack size and stress distribution with component life. Planetary gear 
train synthesis and optimization were also used, applying statistical methods to select configurations that 
maximize performance and strength.

Analytical Modelling
Modeling was used to derive ordinary differential equations, which can be solved to predict various results, 

such as vibration levels and force applications. This method allowed for non-proprietary analysis with relatively 
few inputs, making it accessible to designers to understand the behavior of gears under different operating 
conditions, which is detailed below:

Multiple Linear Regression
The formula for multiple linear regression was:

y=β0 +β 1x1 +β2x2 +…+βnxn + ϵ

Where:
y is the dependent variable.
x1, x2,…,xn   are the independent variables.
β0   it is the intercept.
β1 ,β2 ,…,βn   are the coefficients of the independent variables.
ϵ it is a random error.

Multiple linear regression is a method for modelling the relationship between a dependent variable and 
one or more independent variables. It is used to predict or explain the variability of a variable based on other 
variables.

Mathematical Formulation of NSGA-II
Multi-objective optimisation with objective functions:

minxÎX F(x) = [ʄ1(x), ʄ2(x),...ʄ1m(x)]
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Where x represents a set of decision variables, each function ʄi(x) is an objective function that seeks to be 
minimized or maximized.

Application of the NSGA-II Algorithm
NSGA-II follows a process based on genetic evolution with the following steps:
Generation of the Initial Population: a population of 𝑁 individuals is created randomly.
Pareto Dominance Ranking: the population is organized into different levels of dominance.
Crowding Distance Calculation: the solution diversity is evaluated using the ‘crowding distance’ metric.
Selection, Crossover, and Mutation: Genetic operators are applied to generate new solutions. Selection is 

by binary tournament based on Pareto dominance and crowding distance.
Crossover of decision variables (usually with SBX - Simulated Binary Crossover).
Gaussian or polynomial mutation to explore new regions of the search space.
Population Update: the current and new generations are combined, and the best solutions are selected.
Iteration until convergence: the steps were repeated until the stopping criterion (the number of generations 

or convergence of the Pareto front) was reached.

NSGA-II application conditions
For NSGA-II to work effectively, certain conditions had to be met during its implementation:

Definition of objective functions
The objective functions were continuous and differentiable, although NSGA-II can handle problems with 

discontinuities.
In gear problems, the typical objectives were:

•	 Minimize the wear rate ʄ1(x)
•	 Maximise structural strength ʄ2(x)

Problem Constraints
The search space was defined within physical and realistic limits:

xi
min ≤ xi ≤ xi

max, “i =1,2,…,n

In mechanical gears:
•	 x1= Module (1≤ x1≤10)​.
•	 x2= Pressure Angle (14º ≤ x2≤ 25º)​.
•	 x3= Material (categorical variable affecting resistance and wear).

Pareto dominance
A solution X1 dominates another solution X2 if and only if:

“i Î{1,2,…,n}, ʄ1(x1) ≤ʄ2(x2),  and 
$j Î{1,2,…,n}, ʄ1(x1) ≤ʄ2(x2)

One solution dominates another if it is better in at least one objective and no worse in the others.

Data used
The data set used was a collection of observations related to mechanical gear wear. Description of each 

column in the data set:
Module: this field represents the gear module, which measures the stress on the gear and is directly related 

to the traction force.
Pressure angle: this field indicates the pressure angle, which is the frictional force applied to the gear and 

can affect wear.
Lubricant: this field is a categorical variable that indicates the type of lubricant used. The lubricants listed 

are ‘Mineral oil,’ ‘Synthetic oil,’ and ‘EP grease.’ The type of lubricant can significantly impact gear wear and 
service life.

Wear Rate: this was the dependent variable, which measures the gear’s wear rate. The values are measured 
in units of measurement (e.g., μm/h) and reflect the amount of material lost per hour.

RESULTS
The results obtained with NSGA-II show a set of solutions on the Pareto front, which means that they 

represent the best possible compromises between minimizing wear and maximizing the structural strength of 
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the gears. In general, table 1 shows that configurations with higher modules (≥4,5) and pressure angles close to 
25° tend to exhibit higher mechanical strength (up to 125 000 units) and lower wear rates

Table 1. NSGA multi-objective optimisation results

Multi-objective optimisation results (NSGA-II)

Module: 5000, Pressure Angle: 25 000, Wear Rate: -1102, Resistance: 125 000
Module: 4002, Pressure Angle: 20 078, Wear Rate: -2135, Resistance: 80 354
Module: 4006, Pressure Angle: 21 055, Wear Rate: -2080, Resistance: 84 358
Module: 4000, Pressure Angle: 24 406, Wear Rate: -1902, Resistance: 97 619
Module: 4001, Pressure Angle: 23 153, Wear Rate: -1969, Resistance: 92 639
Module: 4032, Pressure Angle: 25 000, Wear Rate: -1845, Resistance: 100 809
Module: 4288, Pressure Angle: 25 000, Wear Rate: -1649, Resistance: 107 200
Module: 5000, Pressure Angle: 25 000, Wear Rate: -1102, Resistance: 125 000

However, lower values of the module and pressure angle generate higher wear rates, indicating that these 
parameters play a key role in gear durability. The wear rate is negative in all solutions, suggesting that an 
inverse metric is being used where more negative values indicate less wear (figure 1).

Figure 1. Pareto front for gear failure analysis

Linear regression, on the other hand, has a high coefficient of determination (R² = 0,882 for wear and R² 
= 0,963 for resistance), indicating that the predictive model is capable of explaining most of the variability in 
the data. However, linear regression does not allow for exploring multiple objectives simultaneously, limiting 
its ability to find optimal solutions in scenarios where conflicts exist between minimizing wear and maximizing 
resistance (figure 2).

In this sense, NSGA-II offers a more robust approach by providing solutions that balance both criteria. 
However, linear regression remains useful for evaluating the influence of each design parameter on performance 
variables and could be used as a pre-filter for NSGA-II, reducing the search space and improving the algorithm’s 
efficiency.

Regarding gear design, these results confirm that an optimal module close to 5,0 and a pressure angle in the 
range of 24°-25° provide the best solutions for strength and lower wear. This is consistent with previous studies 
on gear optimization, where it has been shown that increasing the module reduces the stress concentration and 
improves structural strength, although with a possible impact on gear size and weight. For future improvements, 
it is recommended to explore hybrid approaches combining NSGA-II with numerical simulation (FEM) or machine 
learning, which would allow further refinement of the optimization and experimental validation of the obtained 
solutions.
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Figure 2. Linear regression for gear failure analysis

DISCUSSION
The results obtained using the NSGA-II algorithm reflect a Pareto front that illustrates optimal solutions in 

gear design, achieving a balance between minimizing wear and maximizing structural strength.(22) This multi-
objective approach identifies configurations where no objective can be improved without compromising the 
other, which is essential in engineering problems with conflicting objectives.

In this case, it is observed that higher modules (≥4,5) and pressure angles close to 25° favor greater mechanical 
strength (up to 125 000 units) and reduced wear rates. These findings are consistent with previous research, 
which demonstrated that a high module decreases stress concentration, improving resistance to bending and 
pitting, highlighting the importance of optimizing geometric parameters to reduce stress on the teeth.(23)

The observed trend also indicates that low modules and pressure angles increase wear, underscoring the 
critical influence of these parameters on durability. The inverse wear metric (negative values indicate less wear) 
suggests an appropriate definition for the optimization problem, aligning with multi-objective approaches.(24) 
However, increasing the module may imply a larger gear size and weight, an aspect they point out as a practical 
limitation in applications where lightness is a priority.(25)

On the other hand, the applied linear regression shows a high coefficient of determination (R² = 0,882 for 
wear and R² = 0,963 for resistance), demonstrating its ability to capture data variability and evaluate the 
individual influence of design parameters. It uses statistical models to estimate the behavior of gear systems.(26)

However, its limitation lies in its single-objective approach, which cannot simultaneously resolve conflicts 
between wear and resistance, unlike NSGA-II. This contrast highlights the superiority of multi-objective 
evolutionary algorithms(27) for complex design problems. A hybrid strategy could take advantage of linear 
regression as an initial filter to reduce the search space, increasing the efficiency of NSGA-II, as has been 
proposed in previous optimizations with CAD/CAE.(28)

From a design perspective, the results suggest that a module close to 5,0 and a pressure angle between 
24° and 25° offer an optimal compromise, revising the optimization of cylindrical gears.(29) This range improves 
load capacity, although it may require adjustments depending on specific weight or space constraints. To move 
forward, integrating NSGA-II with numerical simulation (FEM) or machine learning would allow the solutions 
to be experimentally validated and refined under real conditions, which is a notable trend in mechanical 
optimization.(30)

When comparing the methods and highlighting their advantages and disadvantages, it is found that NSGA-
II (Multi-Objective Optimisation) allows for optimal solutions compared to the Pareto front, as it explores 
relationships between wear rate and resistance, but does not achieve feasible solutions, so the problem 
formulation must be corrected.(31)

Linear regression, on the other hand, makes an accurate prediction (high R²) that is easy to interpret and use 
but does not optimize directly. It does not find the optimal balance between wear and resistance.(32)
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Based on the findings, NSGA-II proves to be a robust tool for gear design, overcoming the limitations of linear 
regression in multi-objective contexts. The optimal parameters identified are consistent with the literature and 
provide a solid basis for practical applications. However, future research should consider hybrid approaches and 
experimental validation to maximize their impact on industrial design.

CONCLUSIONS
Based on the analysis of the results, it is concluded that multi-objective optimization using NSGA-II is highly 

effective in improving the durability and efficiency of mechanical gears by identifying key design parameters 
that balance wear minimization and structural strength maximization.

The findings highlight that an optimal module close to 5,0 and a pressure angle in the range of 24°-25° are 
ideal configurations, as they promote greater mechanical strength (up to 125 000 units) and significantly reduce 
wear rates. These parameters, consistent with the literature, decrease stress concentration and improve gear 
life, aligning to optimize overall system performance.

It is recommended to move towards integrated methodologies that combine NSGA-II with numerical simulation 
(FEM) and machine learning to validate solutions and fine-tune parameters under real conditions experimentally. 
This strategy will consolidate the benefits of durability and efficiency and position gear design at the forefront 
of mechanical engineering, fully meeting the established objectives.
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