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ABSTRACT

Introduction: prostate cancer is a prevalent malignancy among elderly men, with bioinformatics playing a 
crucial role in advancing diagnosis and treatment paradigms. Recent studies have highlighted the significance 
of nucleotide metabolism (NM) in Prostate cancer development and progression, linking it to aggressive 
cancer phenotypes characterized by uncontrolled proliferation and metastasis. Understanding NM-related 
genes (NMRGs) could provide insights into Prostate cancer pathogenesis and therapeutic targets.
Method: this paper analyzed TCGA-PRAD and GSE70769 datasets to identify critical modules associated with 
NMRGs using weighted gene co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) 
between Prostate cancer and control samples were extracted from the TCGA-PRAD dataset, with overlaps 
identified as NM-related DEGs (DE-NMRGs). A biochemical recurrence (BCR)-free risk model was constructed 
from 396 Prostate cancer samples, and patients were classified into high- and low-risk groups based on 
median risk scores. A nomogram model integrating key prognostic factors was developed to predict BCR rates.
Results: this paper identified 5 prognostic genes: RGS11, KAT2A, MXD3, TARBP1, and WFIKKN. The low-risk 
group exhibited significantly higher BCR-free survival rates, ESTIMATE scores, and immunophenoscore (IPS) 
scores compared to the high-risk group. Additionally, potential therapeutic agents, including KU-55933 and 
Wee1 inhibitors, were proposed.
Conclusions: the identified prognostic genes present promising targets for Prostate cancer diagnosis and 
treatment, emphasizing their importance in predicting biochemical recurrence and tailoring personalized 
therapeutic strategies for patients.

Keywords: Prostate Cancer; Risk Model; Nucleotide Metabolism; Prognostic Genes; Prostate Cancer; Risk 
Prediction; Nucleotides; Genes.

RESUMEN

Introducción: el cáncer de próstata es una neoplasia maligna prevalente en hombres de edad avanzada, y la 
bioinformática juega un papel crucial en el avance de los paradigmas de diagnóstico y tratamiento. Estudios
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recientes han destacado la importancia del metabolismo de nucleótidos (NM) en el desarrollo y la progresión 
del CaP, vinculado a fenotipos de cáncer agresivo caracterizado por la proliferación incontrolada y metástasis. 
La comprensión de los genes relacionados con el metabolismo de nucleótidos (NMRGs) podría proporcionar 
información sobre la patogénesis y las dianas terapéuticas.
Método: este documento analizó los conjuntos de datos TCGA-PRAD y GSE70769 para identificar módulos 
críticos asociados con NMRGs utilizando análisis de redes de coexpresión de genes ponderados (WGCNA). Los 
genes diferencialmente expresados (DEGs) entre CaP y muestras de control fueron extraídos del conjunto 
de datos TCGA-PRAD, con superposiciones identificadas como DEGs relacionados con NM (DE-NMRGs). Se 
construyó un modelo de riesgo libre de recidiva bioquímica (BCR) a partir de 396 muestras de CaP y los 
pacientes se clasificaron en grupos de riesgo alto y bajo con base en los puntajes de riesgo medio. Se 
desarrolló un modelo de nomograma que integra factores pronósticos clave para predecir las tasas de BCR.
Resultados: este documento identificó 5 genes pronósticos: RGS11, KAT2A, MXD3, TARBP1 y WFIKKN. El grupo 
de riesgo bajo presentó tasas de supervivencia libre de BCR, puntajes estimados y puntajes de inmunofenotipo 
(IPS) significativamente más altos en comparación con el grupo de riesgo alto. Adicionalmente, se han 
propuesto posibles agentes terapéuticos, incluyendo los inhibidores de KU-55933 y Wee1.
Conclusiones: los genes pronósticos identificados presentan dianas prometedoras para el diagnóstico y 
tratamiento del CaP, destacando su importancia en la predicción de la recidiva bioquímica y la adaptación 
de estrategias terapéuticas personalizadas para los pacientes.

Palabras clave: Cáncer de Próstata; Modelo de Riesgo; Metabolismo de Nucleótidos; Genes Pronósticos; 
Predicción de Riesgos.

INTRODUCTION
Prostate cancer is a common malignant tumor affecting elderly men. In recent years, the detection rate 

of Prostate cancer has risen significantly, largely due to the widespread implementation of screening method.
(1,2) Within the realm of Prostate cancer pathology, chromosomal aberrations play a pivotal role in early stages, 
leading to abnormal activation of the androgen receptor (AR) signaling pathway.(3,4) This aberrant activation 
induces alterations in metabolic pathways, thereby accelerating the proliferation of Prostate cancer cells.(5) 
The primary method for screening Prostate cancer involves a blood test for prostate-specific antigen, often 
complemented by a digital rectal examination (DRE). However, determining the appropriate threshold level for 
PSA testing remains a contentious issue due to the risk of overdiagnosis.(6,7) Diagnostic evaluation of suspected 
Prostate cancer typically involves transrectal ultrasound-guided biopsy of prostate tissue specimens, with 
subsequent assessment with the Gleason grading system.(8) The Gleason score serves as a crucial prognostic 
indicator for prostate cancer, with higher scores indicative of more aggressive tumors and poorer prognoses.(9,10)

These findings underscore the imperative of comprehending the pathogenic mechanisms underlying Prostate 
cancer and highlight the urgent need for the development of more effictive treatment modalities.

Research has revealed that heightened expression of specific genes can profoundly influence nucleotide 
metabolism NM), a pivotal susceptibility trait implicated in cancer initiation and progression.(11,12) These 
genes are intricately involved in modulating various facets of nucleotide biology, including synthesis, repair, 
and degradation, thereby exerting a significant impact on cancer-associated metabolic reprogramming. For 
instance, certain genes may facilitate the synthetic pathway, boosting nucleotide production, while others 
may impede nucleotide breakdown, thus reducing their consumption.(13,14) Bioinformatics research stands 
at the forefront of transforming cancer diagnosis and treatment paradigms.(15,16) Through the integration of 
high-throughput sequencing data and advanced computational tools, this field offers novel insights into the 
molecular understanding of cancer.(17,18) By meticulously analyzing vast datasets, bioinformatics identifies 
emerging biomarkers and prognostic indicators, thereby paving the way for more precise and personalized 
approaches to cancer care.(19,20) The application of bioinformatics in Prostate cancer research has unveiled 
a multifaceted understanding of disease onset and progression, elucidating the pivotal roles played by gene 
mutations, expression profiles, NM, and immune cell infiltration.(21,22) Particularly, NM emerges as a critical 
driver in Prostate cancer development and evolution, with aberrant nucleotide metabolism, influenced by 
overexpressed genes, identified as a fundamental susceptibility trait in cancer.(23,24) Cancer cells exhibit aggressive 
phenotypes, including uncontrolled proliferation, chemotherapy resistance, immune evasion, and metastasis, 
and are intrinsically associated with increased levels of nuclear material (NM). This metabolic reprogramming 
not only fuels the relentless growth of tumors but also underpins their resistance to treatment and ability to 
spread. Notably, nucleotide synthesis inhibitors, among the earliest anti-cancer agents discovered, continue to 
serve as cornerstone therapeutics across various cancer types. The pervasive upregulation of NM in cancer cells 
underscores its indispensability in sustaining tumor growth and malignant behaviors.
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Utilizing transcriptome data, this study identified genes associated with NM and employed machine 
learning techniques to develop a risk model for predicting recurrence in Prostate cancer patients post-radical 
prostatectomy. The constructed model effectively predicts the likelihood of biochemical recurrence in Prostate 
cancer patients, potentially revealing novel biomarkers for enhanced diagnosis and treatment strategies. By 
integrating advanced computational methods with transcriptomic insights, this research offers valuable insights 
into the management of Prostate cancer patients, aiding clinicians in making informed decisions regarding 
patient care.

METHOD
Experiment information

Place and date of its realization: Mongolia.
Type of study: Bioinformatics analysis.
Ethical parameters: Respect for autonomy; privacy protection; the principle of non-injury; the principle 

of justice; ethical review and supervision; international cooperation and cultural sensitivity; responsible 
innovation; academic integrity.

Data acquisition
The TCGA-Prostate Adenocarcinoma (PRAD) including 481 prostate gland of Prostate cancer (Prostate 

cancer) and 51 normal samples was sourced from TCGA as a training dataset. Thereinto, 396 Prostate cancer 
samples that contained recurrence information and time were selected to construct a risk model, including 346 
biochemical recurrence-free survival (BCRFS) and 50 biochemical recurrences (BCR). The primary tumors tissue 
of 92 Prostate cancer patients including 47 BCRFS and 45 BCR were screened from the GSE70769 of GEO database 
(https://www.ncbi.nlm.nih.gov/geo/), and the GSE70769 was considered as a testing dataset based on Illumina 
HumanHT-12 V4.0 expression beadchip to verify the risk model. Afterward, we used ‘Nucleotide metabolism’ 
as a keyword to select nucleotide metabolism-related genes (NMRGs) from the Molecular Signatures Database 
v7.1 (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb), and 97 NMRGs were obtained. Moreover, 90 NMRGs 
were obtained from the published literature. After removing duplicates, 104 Nuclear Material-Related Genes 
(NMRGs) were used in the study.

Identification of DEGs 
In TCGA-PRAD, the DEGs were identified between Prostate cancer (n=481) and control (n=51) samples by 

‘DESeq2 (v. 1.36.0)’ R package, and the thresholds were | log2FC | > 1 and Padj. <0,05. The DEGs were 
displayed by volcano maps and heat maps using the ‘ggplot2 (v. 3.3.6)’ and ‘pheatmap (v. 1.0.12)’ R packages. 

WGCNA
The 481 Prostate cancer samples were used to perform the WGCNA by the ‘WGCNA (v. 1.72.1)’ R package. 

The R2 was closest to 0,8 when the soft-threshold β = 7. Then, several gene modules were generated by dynamic 
tree cutting (genes number200). To further explore the modules that highly correlated with NMRGs, the NMRGs 
scores in TCGA-PRAD were calculated via the ssGSEA algorithm of ‘GSVA (v. 1.44.5). The highly correlated two 
modules were screened based on Spearman’s correlation. Finally, we overlapped the DEGs and module genes by 
‘ggvenn (v. 0.1.9)’ R package as nucleotide metabolism-related DEGs (DE-NMRGs) in Prostate cancer patients. 

Functional enrichment analysis and construction of PPI networks 
The GO and KEGG analysis were used for understanding the DE-NMRGs related biological functions and 

pathways by the ‘clusterProfiler (v. 4.7.1.001)’ R package. The GO items and KEGG pathways were filtered out 
when P > 0,05, and the GO items and KEGG pathways were generated chordal graphs via the ‘DOSE (v. 3.26.2)’ 
and ‘GOplot (v. 1.0.2)’ R packages, respectively. Additionally, the PPI network of DE-NMRGs was constructed 
using data from the STRING database (http://string.embl.de/) (medium confidence = 0,4).

The prognostic risk models were established and validated
Firstly, univariate COX analysis was performed on data from 396 Prostate cancer samples to identify 

candidate genes for NMRG. Selection criteria included a Hazard Ratio (HR) ≠ 1 and a significance threshold of P 
< 0,05. Subsequently, feature genes were further refined based on the fulfillment of the proportional hazards 
(PH) assumption at P < 0,05. Then, we constructed a LASSO regression analysis to determine the characteristic 
genes again. Next, prognostic genes were identified through multivariate Cox analysis, forming the basis for 
constructing the prognostic risk model. To further assess the efficacy of the risk model, ROC curves were 
generated using data from the TCGA-PRAD and GSE70769 datasets. According to the median risk score, the 
396 Prostate cancer patients in the TCGA-PRAD dataset were subsequently divided into low-risk (n=198) and 
high-risk (n=198) groups. Similarly, the 92 Prostate cancer patients in the GSE70769 dataset were divided into 
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low-risk (n=46) and high-risk (n=46) groups. Finally, using the ‘survminer (v. 0.4.9)’ R package (https://cran.r-
project.org/package=survminer), Kaplan-Meier (KM) curves of Subsequently, based on the median risk score, 
the 396 Prostate cancer patients were divided into low- (n=198) and high- (n=198) risk groups in TCGA-PRAD, 
and the 92 Prostate cancer patients were divided into low- (n=46) and high- (n=46) risk groups in GSE70769. 
Subsequently, based on the median risk score, the 396 Prostate cancer patients were divided into low- (n=198) 
and high- (n=198) risk groups in TCGA-PRAD, and the 92 Prostate cancer patients were divided into low- (n=46) 
and high- (n=46) risk groups in GSE70769. Lastly, using the ‘survminer (v. 0.4.9)’ R package (https://cran.r-
project.org/package=survminer), the BCR probabilities between high- and low-risk groups were compared by 
Kaplan-Meier (KM) curves in TCGA-PRAD and GSE70769, respectively. Additionally, we computed the survival 
time of Prostate cancer patients and analyzed the expression levels of prognostic genes in the two risk groups 
within both the TCGA-PRAD and GSE70769 datasets. 

GSEA
The correlation between prognostic genes and all of other genes were counted by Spearman’s correction. 

The correlation coefficients of genes were ranked to perform the GSEA. Based on the ‘clusterProfiler (v. 
4.7.1.001)’ R packages and ‘3.h.all.v2023.2.Hs.symbols.gmt’ from the MSigDB database, the related-pathways 
were enriched at |NES| > 1 and Padj. < 0,05. 

Correlation between clinical indicators and risk scores
The correlation between risk scores and clinical indicators (Age, Gleason, T categories, N categories, 

and prostate-specific antigen (PSA) level) were compared in two risk groups of TCGA-PRAD. We conducted 
univariate and multivariate Cox for risk scores and those clinical indicators, and effective factors was screened 
as independent prognostic. The screening criteria for univariate Cox was HR≠1 and P < 0,05, and multivariate 
Cox was HR≠1 and P < 0,02. By the ‘rms (v. 6.3-0)’ R package, the nomogram model was constructed based 
on the independent prognostic factors. The points corresponding to each independent prognostic predictor 
were aggregated to calculate the total point, which was then utilized to predict the 1-, 3-, and 5-year BCR. 
Subsequently, the model was evaluated using calibration curves and ROC curves. 

Tumor microenvironment
The ssGSEA algorithm of the ‘GSVA (v. 1.44.5)’ R package was applied to compute the 28 immune cell scores 

in 396 Prostate cancer samples. The 28 infiltrating immune cells in the two risk groups of TCGA-PRAD were 
displayed by ‘pheatmap (v. 1.0.12)’ R packages. The difference of infiltrating was compared by the Wilcoxon 
test (P < 0,05). The Spearman’s correlation between prognostic genes and 28 immune cell types was analyzed 
using the ‘ggcor (version 0.9.8.1)’ R package. Based on the Wilcoxon test, we compared the difference of 
Immune Scores, Stromal Scores, and Estimate scores between high- and low-risk groups using the ‘estimate (v. 
1.0.13) R packages. Besides, the 4 immunophenoscore (IPS) scores of Prostate cancer samples were scoured 
from the cancer immunome atlas.

Drug sensitivity analysis
We downloaded 198 drugs from the GDSC database. The IC50 values of 198 drugs in Prostate cancer patients 

were calculated via the ‘oncoPredict (v. 0.2)’ R package and compared between two groups via the Wilcoxon 
test (P < 0,05) in TCGA-PRAD. The Spearman’s correlation between IC50 and risk score was analyzed, and the 
drugs with |cor| > 0,3 and P < 0,05 were considered potential drugs in Prostate cancer.

ceRNA network 
The miRNAs linked with prognostic genes were obtained on the DIANA microT-CDS and miRDB database, 

respectively. The intersection miRNAs of the two databases were used to generate the miRNA-mRNA pairs. Then, 
based on the intersection miRNAs, the LncRNAs were predicted on the starBase database as the clipExpNum>70 
criteria. Last, the ceRNA network was constructed based on the above relation pairs.

RESULTS
A total of 105 DE-NMRGs were identified in Prostate cancer patients

Between Prostate cancer and healthy controls, there were 867 upregulated DEGs and 1,398 downregulated 
DEGs in TCGA-PRAD (figure 1A, B). The NMRG score was significantly higher in the Prostate cancer samples 
compared to the healthy controls (P < 0,001) (figure 1C). The WGCNA methodology was employed to identify 
gene modules associated with NMRGs. Through the clustering analysis of 481 Prostate cancer samples, there was 
no abnormal sample (figure 1). After determining β = 7, all of the genes were divided into 7 modules (figure 1D, 
E). Then, the MEpink (528 genes) and MEblack (585 genes) modules that highly correlated with the NMRGs score 
were selected as key modules, which contained 1,113 module genes (figure 1F). Ultimately, the 2,265 DEGs and 
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1,113 module genes were overlapped to obtain 105 DE-NMRGs (figure 1G). Additionally, GO results suggested 
that the DE-NMRGs were enriched into ‘homologous recombination’, ‘reciprocal meiotic recombination’, and 
‘reciprocal homologous recombination’, etc (figure 1H, I). KEGG results showed that the DE-NMRGs were linked 
with the ‘fanconi anemia pathway’, ‘mineral absorption’, ‘steroid hormone biosynthesis’, etc (figure 1J). The 
PPI network showed that ‘KAT2A-HDAC10’, ‘HGFAC-GSD1’, etc. had a strong interaction (figure 1K). 
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Figure 1. A total of 105 DE-NMRGs were identified in Prostate cancer patients, A. Differential gene map, B. Differential 
gene expression calorimetric map, C. Differences in NMRGs scores between Prostate cancer and Control groups, D. Left: 
scale-free fit index; right: average of all gene contiguity functions, E. Construct a co-expression network, F. Key module 
screening, G. Venn diagram of DE-PMRGs, H. Functional enrichment analysis of DE-NMRGs, I-J. Functional enrichment 
analysis of DE-NMRGs, K. DE-NMRGs PPI Network
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Figure 1A: Differential gene map, the orange equilateral triangle signifies up-regulated differentially 
expressed genes, the green inverted triangle represents down-regulated differentially expressed genes, and 
the gray X-shaped symbols denote genes that lack statistical significance. 

Figure 1B: Differential gene expression calorimetric map, the NMRG score was significantly higher in the 
Prostate cancer samples compared to the healthy controls (P < 0,001).

Figure 1C: Differences in NMRGs scores between Prostate cancer and Control groups, significant variations 
were observed in NMRGs scores between these groups, indicating a distinct role for NMRGs in Prostate cancer.

Figure 1D: In the left figure, the vertical axis shows the scale-free fit index (signed R2), where a higher 
value indicates a stronger adherence to a scale-free network distribution. In the right figure, the vertical axis 
represents the average of all gene contiguity functions in the corresponding gene module.

Figure 1E: Construct a co-expression network. Tens of thousands of genes in the expression matrix were 
clustered into modules, forming a systematic hierarchical tree. Each gene module contained at least 200 genes, 
resulting in a total of 11 modules.

Figure 1F: Key module screening: Heat map presenting the correlation between modules and scores. Among 
the 11 modules obtained from WGCNA analysis, MEpink (528 genes) and MEblack (585 genes), the two modules 
with the highest absolute NMRGs score, were selected as key modules, with a total of 1113 genes.

Figure 1G: Venn diagram of DE-PMRGs: This process yielded a total of 105 intersection genes, which were 
identified as DE-NMRGs.

Figure 1H: Functional enrichment analysis of DE-NMRGs. The top 8 entries from each of the three sections 
of GO enrichment are visualized in ascending order based on their P-values

Figure 1I-1J: Functional enrichment analysis of DE-NMRGs. Figure 1I: The top 8 entries from each of the 
three sections of GO enrichment are visualized in ascending order based on their P-values. Figure 1J: The left 
half of the circle depicts genes, with colors indicating the logFC (logarithm of fold change) value: red denotes 
up-regulated expression, while blue signifies down-regulated expression. The intensity of the color reflects the 
magnitude of the fold change, with darker shades indicating larger differences.

Figure 1K: DE-NMRGs PPI Network. An interaction network of 101 genes was obtained, containing 101 nodes 
and 33 interacting pairs.

Five prognostic genes were selected by the LASSO-Cox regression analyses
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Figure 2. A-B. Prognostic gene screening, C-G. GSEA Enrichment Analysis

Based on the 391 Prostate cancer samples with recurrence information and time, 60 feature genes were 
screened by univariate Cox analysis. After the PH test, 55 feature genes were retained (P < 0,05). Subsequently, 
feature genes were narrowed down to 5 by the LASSO analysis (figure 2A, B). The 5 remaining feature genes 
were determined again as prognostic genes via multivariate Cox analysis, including RGS11, KAT2A, MXD3, 
TARBP1, and WFIKKN1. Therefore, the 5 prognostic genes of the risk model could be independent prognostic 
predictors. The GSEA results indicated that all of the prognostic genes except TARBP1 were enriched ‘UV 
response DN’, etc. (figure 2C-G). RGS11 and TARBP1 were linked with ‘MYC target V1’ and ‘E2F targets’ (figure 
2C, F). RGS11, KAT2A, and WFIKKN1 were related to ‘TNFA signaling via NFKB’ (figure 2C, D, G). 

Figure 2A-2B: Prognostic gene screening, figure 2A Lasso Regression Analysis: AXIS X offers a magazine 
(Lambda), but the axis shows a cross -check error there. 

Figure 2B: The horizontal axis displays deviance, indicating the proportion of the residual explained by 
the model, with the number of genes plotted against the proportion of the residual explained. The y-axis 
represents the coefficient of each gene.

Figure 2C-G: GSEA Enrichment Analysis: The top 5 Hallmarks pathways are displayed based on their P. adjust 
values, arranged from small to large.

The BCR-free rate in the high-risk group was lower than that in the low-risk group
The risk model was established based on the five prognostic genes, with the risk coefficients shown in 

figure 3A. The Prostate cancer patients in TCGA-PRAD and GSE70769 were categorized as high- and low-risk, 
respectively. In TCGA-PRAD and GSE70769, the BCR-free rate was significantly lower in the high-risk group than 
in the low-risk group (figure 3B, C). Moreover, the BCR-free survival probability of Prostate cancer patients in 
the high-risk group was lower (figure 3D, E). The area under the curve (AUC) for 1-, 3-, and 5-year periods was 
above 0,6 in both TCGA-PRAD and GSE70769 datasets, indicating that the prognostic risk model can effectively 
predict the BCR-free probability of Prostate cancer patients (figure 3F, figure 3G). The expression levels of 5 
prognostic genes in low-risk groups were lower than those of high-risk groups (figure 3H, I).
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Figure 3. A. Risk Model Coefficients, B. Risk Curve (Training Set), C. The high-risk group had a higher number of recurrences 
than the low-risk group, D-E. Recurrence rates of Prostate cancer patients, F. ROC Curve (Training Set), G. ROC Curve 
(GSE70769 Validation Set), H. Gene expression heat maps for high-risk and low-risk group models (training set), I. Risk model

Figure 3A: Risk Model Coefficients: This model demonstrates effective prediction of recurrence status in 
Prostate cancer patients, thereby demonstrating improved prognostic performance.

Figure 3B Risk Curve (Training Set). There were more deceased cases observed in the high-risk group 
compared to the low-risk group. The BCR recurrence rate of Prostate cancer patients was lower in the low-risk 
group than in the high-risk group. 

Figure 3C: The high-risk group had a higher number of recurrences than the low-risk group. The recurrence 
rate of BCR samples in the high-risk group surpassed that in the low-risk group, aligning with the findings from 
the training set. This consistency underscores the stability and applicability of prognostic risk models.          

Figure 3D-H: Establishment and Verification of the Risk Model:
Figure 3D: It demonstrated a significant difference (p < 0,05) in the recurrence rates of Prostate cancer 

patients between the two groups. Specifically, patients in the high-risk group exhibited a significantly higher 
recurrence rate than those in the low-risk group.

Figure 3E: The recurrence rate of the high-risk group was higher than that of the low-risk group (p < 0,05), 
consistent with the findings from the training set.

Figure 3F: ROC Curve (Training Set): It illustrated a significant difference (p < 0,05) in the recurrence rates 
of Prostate cancer patients between the two groups. Specifically, the high-risk group had a significantly higher 
recurrence rate than the low-risk group.

Figure 3G: ROC Curve (GSE70769 Validation Set): The recurrence rate in the high-risk group was significantly 
higher than that in the low-risk group (p < 0,05), consistent with the results observed in the training set.

Figure 3H: Gene expression heat maps for high-risk and low-risk group models (training set). Expression heat 
maps showing the expression patterns of prognostic genes for high-risk and low-risk groups in the training set 
were also provided.

Fig 3I: The five target genes was tested in different risk groups to validate the risk model.

Nomogram model of Prostate cancer patients was constructed
Here, the risk scores varied significantly across different subgroups of ages, Gleason scores, T categories, 

and N categories. Additionally, there were significant discrepancies in Gleason scores, T categories, and N 
categories between the two risk groups (figure 4A). In addition, clinical indicators and risk scores were analyzed 
to further develop the risk prediction model. Subsequently, the risk score, Gleason, T categories, and PSA levels 
were screened as independent prognostic predictors by univariate and multivariate Cox, PH test (figure 4B, 
figure 4C). Later, those independent prognostic predictors were used to develop a nomogram model aimed at 
better predicting the BCR rate of Prostate cancer patients (figure 4D). Furthermore, the AUCs for all the three 
time periods (1, 3, and 5 years) were above 0,7, indicating that the nomogram exhibited excellent predictive 
ability (figure 4E). The calibration curves of the three periods (1, 3, and 5 years) suggested that the nomogram 
was in good agreement with the actual BCR of Prostate cancer patients (figure 4F).

Figure 4A: Among the five target genes, significant differences were observed across different subtypes of 
Gleason, N, and T among the two groups.

Figure 4B-4C: Multivariate Cox regression analysis:
Figure 4B Univariate Cox analysis was performed on Prostate cancer samples in the TCGA-Prostate cancer 

dataset, as well as HR≠1 criteria and P values. The risk score, Gleason score, T, N, and PSA were obtained. 
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Figure 4C Risk score, Gleason, T, N, and PSA were included for multivariate Cox prognostic analysis. HR≠1 and 
P value<0,2 were used as criteria for screening. Risk score, Gleason, T, and PSA were identified as independent 
prognostic factors.

Figure 4D: Nomogram of independent prognostic factors: The R language rms package is used to score based 
on riskScore, Gleason, T, and PSA. Each factor corresponds to a score, and the sum of the scores of each factor 
corresponds to the TotalPoint. The recurrence rate at 1, 3, and 5 years is predicted according to the total score.

Figure 4E: ROC curve of Nomogram model: The AUC values of the Nomogram model for the first, third, and 
fifth years are all greater than 0,6, demonstrating that the Nomogram model has good predictive ability.

Figure 4F: Nomogram Calibration Curve: The horizontal coordinate represents the predicted event incidence, 
while the vertical coordinate denotes the actual event incidence. Both coordinates range from 0 to 1, indicating 
the percentage of event occurrence. 

Figure 4. A. Subtypes of Gleason, N, and T, B-C. Multivariate Cox regression analysis, D. Nomogram of independent 
prognostic factors, E. ROC curve of Nomogram model, F. Nomogram Calibration Curve
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Immune mechanism was explored in Prostate cancer patients
In TCGA-PRAD, two groups of immune cell infiltration are shown in figure 5A. All immune cells, except 

CD56dim natural killer cells, exhibited significant differences between the two groups (P < 0,05) (figure 5B). 
Five prognostic genes showed significant correlations with most immune cells (figure 5C). Among them, the 
absolute value of the correlation coefficient between the effector memory CD4 T cell and KAT2A was the 
highest , which was | -0,476 | (P < 0,001). Furthermore, it turned out that Stoma’s score, evaluation score, 
and high-risk group immune scores were significantly lower than low-risk groups (figure 5D-F). The Immuno-
Phenoscore (IPS) score was used to predict patient response to immune checkpoint inhibitor (ICI) treatment. As 
shown in figure 5G-J, The IPS scores of CTLA4-/PD-1-, CTLA4-/PD-1+, and CTLA4+/PD-1- in the low-risk group 
were significantly higher than those in the high-risk group. This suggests that immune checkpoint inhibitors 
(ICIs) may be effective in treating low-risk Prostate cancer patients.
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Figure 5. A. Immune cell score heat map, B. Box Plots of Immune Cell Scores in High and Low-Risk Groups, C. Correlation 
between prognostic genes and immune cells, D. Comparison between high-risk and low-risk groups based on Immune Score, 
E. Comparison between high-risk and low-risk groups based on Comprehensive Score, F. Stromal Score, G-J. Differences in 
IPS Between High and Low-Risk Groups

Figure 5A: Immune cell score heat map: The horizontal axis represents 28 types of immune cells (red 
indicates significantly up-regulated immune cells, while blue denotes significantly down-regulated immune 
cells), while the vertical axis represents the proportion of immune cells within the sample.

Figure 5C: Correlation between prognostic genes and immune cells: The horizontal coordinate shows immune 
cells, the vertical coordinate shows prognostic genes, and the five-pointed stars show positive correlation up 
and negative correlation down. 

A total of 37 drugs were predicted related to risk score
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Figure 6. A-H. Top 8 drugs were displayed, I-J. Correlation between Risk-Score and IC50 values
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There were 126 drugs of significantly different IC50 levels between the high- and low-risk groups in 
TCGA-PARD. The top 8 drugs were displayed in figure 6A-H, including KU-55933_1030, NU7441_1038, Wee1 
Inhibitor_1046, MK-1775_1179, AZD6738_1917, ML323_1629, VE821_2111, and BIBR-1532_2043. To explore the 
correlation between prognostic genes and drug sensibility, we analyzed the correlation between risk score and 
drug IC50. There were 37 drugs significantly associated with risk score (|cor| > 0,3, P < 0,05). Among them, 
KU-55933_1030 had a significantly positive correlation with risk score (cor = 0,608, P < 0,001), and Wee1 
Inhibitor_1046 had a significantly negative correlation with risk score (cor = -0,441, P < 0,001) (figure 6I, J).

6A-6H: Top 8 drugs were displayed: The differences in the top 8 drugs between the high and low-risk groups, 
ordered by P-values from smallest to largest, were visualized using box plots.

6I-6J: The correlation between Risk-Score and IC50 values: Spearman correlation analysis was employed to 
examine the correlation between the expression of prognostic genes and susceptibility to common drugs. 

A total of 90 miRNA-mRNA interaction pairs were predicted related to prognostic genes
We submitted the 5 prognostic genes on the online website, and then 264 miRNAs related to the 5 prognostic 

genes from the DIANA microT-CDS database and 208 miRNAs related to the 4 prognostic genes (except WFIKKN1) 
from the miRDB database were predicted. Next, the 89 miRNAs from the two databases were overlapped, which 
contained 90 miRNA-mRNA pairs. Then, the 23 miRNAs were obtained on the miRDB database at clipExpNum>70. 
Based on these 23 miRNAs, 12 LncRNAs were predicted on the miRDB database at clipExpNum>70, which 
generated a ceRNA network (figure 7). Thereinto, the interaction of MXAD was the most complex, including 
MIR17HG-hsa-miR-302b-3p-MXAD, NEAT1-hsa-miR-195-5p-MXAD, etc.

Figure 7. ceRNA regulatory network

In the network map, mRNA nodes are depicted in red, miRNA nodes in green, and lncRNA nodes in blue. 
The lines connecting them represent their interactions. The network comprises 4 mRNAs, 89 miRNAs, and 12 
lncRNAs, resulting in a total of 90 interaction pairs.

qRT-PCR 
The expression levels of 5 prognostic genes in Prostate cancer patients exhibited significantly higher values 

compared to those observed in the healthy controls within the TCGA-PARD dataset (figure 8).
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Figure 8. Expression of Prognostic Genes (Training Set)

DISCUSSION
Prostate cancer originates from the prostate gland, specifically in the gland cells, making it an 

adenocarcinoma. Diagnosis often involves a PSA test, digital rectal examination (DRE), and needle biopsy, 
which is the most commonly used test. Early detection and management are crucial for effective treatment 
and improving outcomes.

The relevant data information was downloaded from the GEO and TCGA databases, and bioinformatics 
techniques were used to screen for five highly expressed genes (RGS11, KAT2A, MXD3, TARBP1, and WFIKKN) 
associated with Prostate cancer. These five highly expressed genes have never been used in previous Prostate 
cancer studies, making this study innovative.

The application of gene expression analysis and tumor research is an important bioinformatics method, 
which can screen out genes with potential clinical significance in a large number of gene expression data. For 
example, the RGS11 gene has been found to be associated with tumor aggressiveness and metastasis in some 
studies and has been used as a novel tumor marker for lung cancer. The MXD3, TARBP1, and WFIKKN genes have 
also been mentioned in other cancer-related studies and have been shown to play a role in tumor cell growth, 
apoptosis, and metastasis. Using computer models to construct predictive models incorporating these genes 
to predict disease progression and treatment in Prostate cancer patients, thus providing a scientific basis for 
clinical treatment decision.

1.RGS11: Involved in signaling pathways by regulating G-protein activity. Potentially influences Prostate 
cancer cell behavior through effects on cell signaling, though more research is needed to establish a clear link. 
2.KAT2A (GCN5 or PROSTATE CANCERF) A histone acetyltransferase that modifies chromatin structure, affecting 
gene expression. Overexpression or dysregulation of KAT2A may contribute to uncontrolled cell growth and 
tumorigenesis in Prostate cancer. 3.MXD3: A transcription factor that forms heterodimers with MAX, regulating 
genes involved in cell cycle and apoptosis. It is role in Prostate cancer is not well-established, but it may 
influence the expression of genes critical to cancer development. 4. TARBP1: Encodes a protein involved in RNA 
processing and stability. While primarily associated with neurodegenerative diseases, TARBP1 could theoretically 
impact Prostate cancer through effects on gene expression or RNA metabolism. 5.WFIKKN: Encodes a protein 
with anti-inflammatory properties that may modulate immune response and tumor microenvironment. Its 
specific role in Prostate cancer is not well-defined, but it could influence cancer progression through effects on 
inflammation and immunity.

Given the current state of research, it’s crucial to approach the study of these genes in Prostate cancer 
with the understanding that the full extent of their involvement is not yet completely understood, and further 
investigation is necessary. 

At present, there are no studies on RGS11, KAT2A, MXD3, TARBP1, and WFIKKN with Prostate cancer have 
been reported. For the first time, we have analyzed the association between Prostate cancer and RGS11, 
KAT2A, MXD3, TARBP1, and WFIKKN through biogenic analysis, but the specific functional mechanism needs to 
be further verified through follow-up experiment.

Therefore, in this study, five highly expressed genes were selected using bioinformatics methods, based 
on which a Prostate cancer risk prediction model was established, providing a new perspective and tool for 
personalized treatment and evaluation of Prostate cancer prognosis. Future studies are needed to further 
confirm the clinical utility of these genes and explore their specific roles in the development of Prostate cancer.

CONCLUSIONS
Overall, RGS11, KAT2A, MXD3, TARBP1, and WFIKKN have emerged as potential therapeutic targets for 

diagnosing and treating Prostate cancer. Their identification through the BCR-free risk model underscores their 
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significance in predicting biochemical recurrence and guiding personalized treatment strategies for Prostate 
cancer patients.
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