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ABSTRACT

Abdominal Reconstruction shows the progress created by artificial intelligence and machine learning AI & 
ML, especially those involving vascularized flaps. Therefore, this systematic review seeks to find out how 
incorporating AI can transform surgical accuracy, minimize post-surgical complications, as well as improve the 
recovery process. AI is already being used for planning surgery forecasting failure of flaps as well and minimizing 
SSI. Machine learning models like neural networks demonstrate impressive accuracy in identifying high-risk 
patients such as those with obesity, chemotherapy exposure, or large fascial defects. Real-time data analytics, 
remote monitoring through AI and ML have improved the decision-making process and led to efficient surgeries 
and better functional outcomes by reducing surgical failure and post-operative complications. Integrating AI into 
complex surgical environments requires carefully balancing machine recommendations and human expertise 
yet ethical concerns surrounding data transparency, bias, and patient privacy and these concerns need critical 
consideration and must be addressed. We conducted this review systematically to evaluate existing studies, 
revealing that while AI is promising to improve surgical outcomes, its real-world applications are still in their 
infancy, and we will evaluate how AI has transformed abdominal reconstruction surgical procedures, plastic 
surgeries, such as breast reconstruction or abdominal wall hernias, or other oncological resections.
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RESUMEN

La reconstrucción abdominal muestra el progreso creado por la inteligencia artificial y el aprendizaje automático
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AI & ML, especialmente aquellos que involucran colgajos vascularizados. Por lo tanto, esta revisión sistemática 
busca averiguar cómo la incorporación de la IA puede transformar la precisión quirúrgica, minimizar las 
complicaciones postquirúrgicas y mejorar el proceso de recuperación. La IA ya se está utilizando para planificar 
cirugías, pronosticar el fracaso de los colgajos y minimizar la ISQ. Los modelos de aprendizaje automático, 
como las redes neuronales, demuestran una precisión impresionante en la identificación de pacientes de alto 
riesgo, como aquellos con obesidad, exposición a la quimioterapia o defectos fasciales grandes. El análisis de 
datos en tiempo real y la monitorización remota a través de la IA y el ML han mejorado el proceso de toma de 
decisiones y han dado lugar a cirugías eficientes y mejores resultados funcionales al reducir el fracaso quirúrgico 
y las complicaciones postoperatorias. La integración de la IA en entornos quirúrgicos complejos requiere un 
equilibrio cuidadoso, las recomendaciones de las máquinas y la experiencia humana, pero las preocupaciones 
éticas en torno a la transparencia de los datos, el sesgo y la privacidad del paciente, y estas preocupaciones 
deben considerarse críticamente y deben abordarse. Realizamos esta revisión sistemáticamente para evaluar los 
estudios existentes, revelando que, si bien la IA promete mejorar los resultados quirúrgicos, sus aplicaciones en 
el mundo real aún están en pañales, y evaluaremos cómo la IA ha transformado los procedimientos quirúrgicos 
de reconstrucción abdominal, las cirugías plásticas, como la reconstrucción mamaria o las hernias de la pared 
abdominal, u otras resecciones oncológicas.

Palabras clave: IA en Cirugía; Colgajos Vascularizados; Recuperación Postoperatoria; Machine Learning.

INTRODUCTION
Artificial intelligence (AI) algorithms and cutting-edge abdominal reconstruction technologies such as 

advancement of vascularized flaps have revolutionized surgical precision and postoperative recovery.(1) As 
advancements in machine learning and real-time data analytics deepen, AI-driven systems are now being applied 
and have optimized flap selection, intraoperative decision-making, and microsurgical techniques, indirectly 
replacing surgeons by its outstanding efficiencies.(2) AI and ML are being used now for complex patient-specific 
variables, AI can improve preoperative planning, decrease intraoperative risks, and estimate postoperative 
outcomes like never before. New technologies in medicine such as 3D and 4D imaging, robotics and tissue 
engineering and all of these interventions are changing approach and fineness of vascularized flaps, infusing 
superior tissue perfusion and quicker return to functionality.(3) One of the significant challenges that still persist 
is now having to manage both the level of complexity of the AI systems and have to make real-time decisions in 
the surgical theatre and, more so, how these systems affect the patient-specific outcomes in certain complex 
cases, such as compromised vasculature or compromised healing environment.(4) Systematic analysis of the 
contemporary advancements in abdominal reconstruction utilizing artificial intelligence and other applications 
of advanced technology in reconstructive surgery will help to estimate this area’s influence on the efficacy of 
vascularized flaps as well as the recovery of postoperative functionality of the affected abdominal area. 

METHOD
We decided to run our search on PubMed, Google Scholar, and the Cochrane library focusing on studies 

related to AI and abdominal reconstruction and vascularized flaps. We included randomized controlled trials 
and observational studies and controlled case series to evaluate how AI or other advanced technologies work in 
abdominal reconstructive surgeries.

Inclusion criteria
Only studies employing machine learning (ML) algorithms and AI for prediction of surgical outcomes are 

included and we filtered only retrospective or prospective cohort studies, pilot implementation studies, or 
mixed-methods evaluations in inclusion. While screening articles, we ensured research specifically evaluating 
outcomes in microsurgical breast reconstruction (flap failure, donor-site complications, and neuropathic 
pain) which was our central focus. Papers must present both primary and secondary outcomes including 
prediction accuracy (AUC, sensitivity, specificity) and clinical outcomes (e.g., complication rates, surgical 
site infections, or patient satisfaction) clearly. Studies compare ML algorithms or intervention groups based 
on risk stratification are prioritized are included as they provide comparative insights into predictive accuracy 
and clinical application. Only peer-reviewed journals from credible surgical or medical sources are considered 
which are published between 2019-2024 in English language only.

Exclusion Criteria
Studies not discussing AI and ML models or fails to provide a clear methodology for how predictive outcomes 
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were achieved was not considered along with papers where surgical outcomes are generalized or not focused on 
microsurgical breast reconstruction (e.g., broad surgical outcomes unrelated to breast reconstruction or cancer 
survivor care) are excluded. Research applying ML models in non-clinical or laboratory settings sor instance only 
theoretical modeling without clinical trial implementation is excluded. Papers lacking statistical analysis of AI 
models were skipped.

Table 1. Search Strategy Table 
Primary Keyword Secondary Keywords (Derived) MeSH Terms and Boolean Operators 

(AND/OR/NOT)
Artificial Intelligence AI, Machine Learning, Deep 

Learning
“Artificial Intelligence” OR “Machine 
Learning” OR “Deep Learning”

Abdominal Reconstruction Abdominal Surgery, Abdominal 
Flap, Abdominal Repair

“Abdominal Reconstruction” OR 
“Abdominal Surgery” OR “Abdominal Flap”

Vascularized Flaps Flap Surgery, Tissue Flaps, Free 
Flaps

“Vascularized Flaps” OR “Flap Surgery” OR 
“Tissue Flaps”

Postoperative Functional 
Restoration

Functional Outcomes, Recovery, 
Post-surgical Restoration

“Postoperative Functional Restoration” OR 
“Functional Outcomes” OR “Recovery”

Advanced Technologies Robotics, Imaging Technologies, 
Predictive Analytics

“Robotics” OR “Imaging Technologies” OR 
“Predictive Analytics”

Figure 1. PRISMA flow diagram of included studies 
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Table 2. Study Characteristics and Effect Sizes
Study Author Year Sample 

Size
Effect Size 
Measure

Effect Size Value (95 % CI) Weight (%) Model Used (Fixed/
Random)

Study 1 O’Neill et 
al. (2020)

1012 AUC AUC 0,95 (Training), AUC 0,67 
(Testing 

400 Fixed 

Study 2 Myung et 
al., 2021

568 Accuracy, AUC Accuracy: 81 %, AUC: 0,89 400 Neuralnet (fixed), 
ROSE (data balancing)

Study 3 McLean et 
al. (2023)

200 SSI Rate 
Reduction, AUC 
accuracy

-8,5 % (95 % CI: -5 % to -12 %) 816 % Fixed

Study 4 Lamin 2020 204 Root Mean 
Square Error 
(RMSE) and Odds 
Ratio (OR)

Least Square Regression: 1,4, 
Random Forest: 1,39, Neural 
Network: 1,50, Gradient 
Boosting: 1,16, Ridge Regression: 
1,28, Elastic Net: 1,31, 0,68 (95 
% CI = 0,57 to 0,79)

318 Uncertain 

Study 5 Hassan et 
al., 2023

964 Area Under 
Curve (AUC) 
for model 
performance

(95 % CI): AUC 0,70 (95 % CI not 
specified in detail)

400 Random Forest model 
used (specific details 
on fixed or random 
effects model not 
provided)

Table 3. Heterogeneity Assessment
Measure Value
Cohen’s d 0,381743.
Cochran’s Q 273,23
I² (%) 98,5 %
Tau² (τ²) 13,35
P-value for Q test < 0,001)

Table 4. Pooled Effect Size and Confidence Intervals
Model Pooled Effect 

Size
95 % Confidence 

Interval
P-value

Fixed-Effects 0,753 (upper limit0,585, 
lower limit 0,921)

(p < 0,001).

Random-Effects 0,754 (Upper limit -0,004, 
lower limit 1,512)

0,051 (one-tailed) or 
0,102 (two-tailed)

Figure 2. Visual representation of effect of included studies
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Risk assessment
Table 5. CASP Checklist Table for Systematic Reviews

CASP Question Author & 
Study 1

Author & 
Study 2

Author & 
Study 3

Author & 
Study 4

Author & 
Study5 

Section A: Are the results of the review 
valid?

Yes Yes Yes Yes Yes

1. Did the review address a clearly 
focused question?

Yes Yes Yes Yes Yes

2. Did the authors look for the right type 
of papers?

Uncertain Uncertain Yes Uncertain Yes

3. Do you think all the important, 
relevant studies were included?

Uncertain Yes Yes Uncertain No

4. Did the review’s authors do enough 
to assess the quality of the included 
studies?

No Yes yes Yes Yes

5. If the results of the review have been 
combined, was it reasonable to do so?

Not 
applicable

Yes Yes Yes yes

Section B: What are the results?
6. What are the overall results of the 
review accurately measured?

Yes Yes Yes Yes Yes

7. How precise are the results? Uncertain Yes Yes Yes Uncertain
Section C: Will the results help locally?
8. Can the results be applied to the local 
population?

Uncertain Yes Yes Yes Yes

9. Were all important outcomes 
considered?

Yes Yes Yes Yes No

10. Are the benefits worth the harms and 
costs?

Uncertain Yes Yes Uncertain Uncertain 

Risk of Bias and Effect Size
The studies included lower bias but some concerns, which were largely influenced by sample size, model 

choice, and external validation. Mostly, included studies show validity and have lower bias. Studies mitigated 
bias with data balancing tools like (ROSE) and achieved model diversity. Effect sizes ranged, with high AUC 
values indicating strong predictive performance in some studies, though heterogeneity (I² = 98,5 %) suggests 
variability across results that could skew pooled effect estimates.

RESULTS
Primary Outcome

Primary findings show AI-driven strategies lower infection rates when compared to traditional care 
approaches. In terms of postoperative infections, usual rate of surgical site infections (SSI) following abdominal 
surgeries typically falls between 20-25 % while with AI and ML models integration demonstrated ability to 
reduce this rate to 16,5 % primarily by enabling early detection and intervention through remote wound 
monitoring. Machine learning models and AI performed exceptionally well, while training models showed 
an impressive AUC of 0,95, which means they are able to achieve a high level of predictive accuracy while 
in testing cohort, the AUC dropped to 0,67, which still demonstrated the model’s ability to retain some 
predictive strength. Machine learning models, particularly neural networks, to predict donor-site complications 
came with 81 % accuracy. Examining risk factors, findings reported among high-risk patients such as diabetic 
patients of people with or chemotherapy exposure, or higher BMI, age, and hypertension may experience 
a complication rate of 26 % using these AI and ML. In contrast, low-risk patients show a lower complication 
rate of just 1,7 % with AI integration. To improve predictive accuracy, ROSE oversampling technique can be 
valuable boosting the model’s performance to an AUC of 0,89, showing potential for machine learning to 
minimize complication rates by more effectively identifying high-risk patients. It is confirmed that along with 
AI, ML models are effective in identifying predictors for neuropathic pain following breast cancer surgery for 
instance, gradient Boosting stood out with the lowest Root Mean Square Error (RMSE) of 1,16 while logistic 
regression demonstrated an AUC of 0,68 in classifying pain. Random forest algorithm showed high efficacy in 
predicting the risk of mastectomy skin flap necrosis (MSFN) with a mean accuracy of 89 %. 
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Table 6. Selected studies 
Unique ID 
(Author+ 
Name)

Background Aim Kind of a Study Comparator Outcome Primary 
and Secondary 

Results Effect of adhering 
to intervention?

Weight Sources

O’Neill et 
al. (2020)

Despite high 
success rates in 
m i c r o v a s c u l a r 
b r e a s t 
reconstruct ion, 
flap failure 
remains a risk.

Evaluate machine 
learning models 
for predicting 
flap failure in 
m i c r o v a s c u l a r 
b r e a s t 
reconstruction.

Re t r o s p e c t i v e 
cohort study

None Primary: Prediction 
accuracy (AUC 0,95 
in training, AUC 
0,67 in testing). 
Secondary: Flap 
failure rates (7,8 
% high-risk, 0,44 % 
low-risk, p = 0,001)

High prediction 
accuracy with 
strong AUC 
values; significant 
flap failure rate 
d i f f e r e n c e s 
between risk 
groups.

Identified high-risk 
factors (obesity, 
c o m o r b i d i t i e s , 
smoking) and their 
impact on flap 
failure.

NA Annals of Surgical 
Oncology, Volume 
27, pages 3466–
3475 (2020). DOI: 
10,1245/s10434-
020-09076-1

Myung et 
al., 2021

Predicting donor-
site complications 
in microsurgical 
b r e a s t 
r e c o n s t r u c t i o n 
using abdominal 
flaps.

Validate machine-
learning models 
for predicting 
d o n o r - s i t e 
complications.

Re t r o s p e c t i v e 
cohort.

Low vs. high 
compl i ca t ion 
risk groups.

C o m p l i c a t i o n 
rate, sensitivity, 
specificity, AUC.

N e u r a l n e t 
predicted 81 % 
accuracy; fascial 
defect >37,5 
cm², diabetes, 
c h e m o t h e r a p y 
i n c r e a s e 
complications.

R e d u c e d 
complications.

AUC 0,89 (ROSE 
oversampling).

Cohort data, 
medical records, 
R packages.

McLean et 
al. (2023)

Remote monitoring 
can improve 
postoperative care 
and reduce surgical 
site infection (SSI).

Pilot digital wound 
monitoring for 
implementation 
readiness in 
clinical practice.

Single-arm pilot 
implementational 
study.

R o u t i n e 
postoperative 
care (based on 
TWIST trial).

Primary: SSI 
rates. Secondary: 
Usability, patient 
satisfaction.

16,5 % SSI rate; 
high patient 
acceptance and 
ease of use.

Improved patient 
satisfaction

Mixed-methods 
evaluation using 
qualitative and 
quantitative data.

WHO framework, 
TWIST trial, mERA 
guidelines.

Juwara et 
al. 2020

N e u r o p a t h i c 
pain affects 
26 % of breast 
cancer survivors; 
aim to identify 
predictors.

Develop a 
p r o g n o s i s 
model using 
machine learning 
to identify 
neuropathic pain 
predictors.

P r o s p e c t i v e 
cohort study

Various machine 
learning models 
(least squares, 
ridge, random 
forest, etc.)

Predictors of 
D N 4 - i n t e r v i e w 
score; logistic 
regression for NP 
classification

Gradient boosting 
model had the 
best performance; 
anxiety and type 
of surgery key 
predictors.

Machine learning 
models improved 
p r e d i c t i o n 
a c c u r a c y 
compared to 
t r a d i t i o n a l 
methods.

Not applicable NCBI

Abbas M, 
2022

MSFN prolongs 
r e c o v e r y , 
c o m p r o m i s e s 
surgical outcomes, 
and delays 
adjuvant therapy.

Develop, validate, 
and evaluate 
machine learning 
algorithms to 
predict MSFN.

Re t r o s p e c t i v e 
review using 
nine supervised 
machine learning 
algorithms.

D i f f e r e n t 
ML models 
compared for 
p r e d i c t i v e 
accuracy.

P r i m a r y : 
Prediction of MSFN 
risk; Secondary: 
Identification of 
predictive factors.

Random forest 
model achieved 
highest accuracy 
(89 %) and 
identified 10 MSFN 
predictors.

E n h a n c e d 
p r e o p e r a t i v e 
o p t i m i z a t i o n , 
patient counseling, 
and surgical 
planning.

R a n d o m 
forest model 
d e m o n s t r a t e d 
s u p e r i o r 
d i s c r im ina to ry 
performance (AUC 
0,70).

Annals of Surgery

Note: Major included studies evaluating machine learning in surgical outcomes including prediction of flap failure, donor-site complications, surgical site infections (SSI), and neuropathic 
pain. Each study assesses AI and ML models discussing outcomes, accuracy metrics (AUC), and secondary factors such as patient satisfaction, complication rates, and predictive accuracy. 
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Secondary Outcomes
Secondary outcomes revealed a clear disparity in flap failure rates between high-risk and low-risk patients. 

The high-risk cohort exhibited a significantly higher flap failure rate of 7,8 %, compared to just 0,44 % in the low-
risk group and this difference was statistically significant with a p-value of 0,001, highlighting the importance 
of stratifying patients by risk levels. Findings show sensitivity and specificity of the predictive models, for 
instance sensitivity was somewhat reduced in the testing cohort the models still demonstrated 79 % sensitivity 
and 89 % specificity. These metrics contributed to improved early detection and prevention of complications 
such as abdominal bulging, hernias, and other related issues in high-risk groups. In terms of patient-centered 
outcomes like patient satisfaction, usability, and adherence to the AI and machine learning-driven interventions 
show promising results with 83 % of patients utilizing the monitoring tool, and 74,1 % completing the Telehealth 
Usability Questionnaire (TUQ). High satisfaction was reflected in the ratings: ease of use scored 4,51 out of 
5, satisfaction 4,27, and usefulness 4,07 which means AI-driven tools not only enhanced patient engagement 
but also streamlined the care process, promising for efficient outcomes. Secondary outcomes show AI and ML 
models are also important in identifying key predictors of neuropathic pain, such as anxiety emerged as a 
significant factor with an odds ratio of 2,18 (95 % CI: 1,05–4,49), indicating that anxious patients were more 
than twice as likely to experience neuropathic pain. Among the models used, the Gradient Boosting model 
demonstrated the most accurate classification with an RMSE of 1,16 while logistic regression achieved an AUC 
of 0,68, solidifying ML role improving pain prediction and management strategies.

DISCUSSION 
Main complications of abdominal reconstruction surgery are flap failures or surgical-site infections, which 

are now solved by AI through enhanced precision by predicting these risks and optimizing flap selection, and 
improving postoperative monitoring. Analyzing patient data and real-time metrics with use of AI algorithms 
ensure accurate predictions and efficient surgical outcomes and this really has transformed medical surgery in 
2024.(14,15,16) Our result show AI in abdominal wall flap reconstruction offers several advantages and we discussed 
reduced infection rates, improved complication prediction, and enhanced patient satisfaction which is also 
confirmed by Elhage & Nwoye, 2022. AI use with machine learning models help identify high-risk patients 
and detect issues early which is crucial for personalized care.(17,18) AI-driven tools streamline postoperative 
monitoring making recovery smoother and more efficient.(18,19,20,21)

Haddock et al. (2024) research stated recent advancements in breast reconstruction and in post-mastectomy 
have focused on enhancing efficiency and improving functional outcomes through various strategies.(6) Innovation 
Lean Six Sigma, a hybrid model combining speed (Lean) and precision (Six Sigma) has shown significant efficacy 
in breast reconstruction surgeries. For example, in DIEP flap breast reconstruction, Lean Six Sigma helped 
reduce operative times by over 100 minutes and shortened hospital stays from 6,3 to 5,2 days. On the other 
hand, research by De Almeida discusses the process improvements of Time-Driven Activity-Based Costing 
(TDABC) which has revolutionized postoperative planning and this method accurately assesses costs by focusing 
on the time taken for each surgical activity allowing hospitals to optimize resource usage. A study applying 
TDABC to enhanced recovery after surgery (ERAS) protocols found a cost saving of $735 per patient and a 
reduced length of stay by 1,5 days.(7) AI and ML has reduced donor site complications as a study by Myung et al. 
(2021) evaluated three machine learning models: neuralnet, nnet, and RSNNS. The neuralnet model excelled 
with the highest prediction accuracy of 81 %, demonstrating exceptional performance in identifying patients 
at risk for donor-site complications. The RSNNS model followed with 69 % accuracy while nnet performed with 
74 % accuracy. ROSE oversampling also plays its role by enhancing these models by addressing data imbalances 
resulting in an improved AUC of 0,89. Combined use of neuralnet’s predictive power and ROSE’s data balancing 
identified high-risk patients with complications like abdominal bulging or hernia thus aiding in more accurate 
and preventative surgical planning in abdominal reconstruction surgery as Myung et al. (2021) stated. McLean 
and others aimed to evaluate the implementation of remote digital postoperative wound monitoring using AI 
and machine learning (ML) in abdominal surgeries, and they conducted a single-arm pilot study involving 200 
patients and demonstrated a 16,5 % surgical-site infection (SSI) rate of 72,7 % diagnosed post-discharge and 
their intervention shows high usability with 83 % patient adherence and AI-assisted monitoring improved SSI 
detection and follow-up care. Results suggest AI and ML can enhance postoperative care and, reduce infection 
rates, improve the accuracy and timeliness of clinical recommendations for optimal surgical recovery and 
wound management post-surgery.(8)

Mafioso et al. 2020 demonstrates how AI could revolutionize breast reconstruction surgery by optimizing 
preoperative planning. The proposed AI algorithm designed for DIEP flap surgeries reduced perforator 
analysis time from 2–3 hours to just 30 minutes per scan with a substantial time-saving of 80 hours across 40 
patients. While AI algorithm performed best with perforators larger than 1,5 mm it struggled with smaller 
ones introducing minor errors in location estimation. AI was able to quickly analyze CTA scans by identifying 
key vascular features and enhancing 3D imaging could streamline the time-consuming process of perforator 
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selection and planning. DL models as developed by Saxena in 2022 showed high sensitivity and specificity when 
identifying vascular structures in synthetic images showing AI’s potential in automating complex tasks. AI can 
also integrate postoperative data learning to predict surgical outcomes like flap failure or complications, so all 
these advancements suggest that AI has enhanced efficiency, reduced human error and improved outcomes in 
breast reconstruction surgery (Saxena., 2024).

Juwara with his team aimed to enhance the prediction of neuropathic pain after breast cancer surgery 
using machine learning (ML) models and employed six ML algorithms, Gradient Boosting and Neural Networks 
to identify pain predictors and compare model performance. They analyzed datasets from a prospective cohort 
study applying algorithms like least squares and random forest and assessing their accuracy via root mean 
square error (RMSE) and area under the curve (AUC). Results favored AI and ML approaches with the Gradient 
Boosting model (RMSE = 1,16) outperforming others and logistic regression showing association between anxiety 
and neuropathic pain (odds ratio = 2,18) favoring superior predictive power of advanced ML techniques over 
traditional methods.(9)

AI and advanced technologies are clearly transforming abdominal reconstruction but successful integration 
into clinical practice is not without challenges.(11) Potential for AI to enhance surgical precision reduce 
complications, and improve patient outcomes is evident with significant barriers remain in real-time surgical 
decision-making and ethical issues like data transparency and bias chances.(12) Our findings show that AI can 
lead to better preoperative planning reduced complication rates which indirectly improve postoperative care, 
especially through techniques like machine learning and remote monitoring.(11) Future requires addressing 
concerns about over-reliance on algorithms and ensuring AI remains a tool which will support, rather than 
replace—surgeons’ expertise. With more advancements in AI and technology, abdominal reconstruction will be 
expanding, promising for more personalized and patient-centered.(13)

Imaging is crucial part of vascular surgery and is not just for diagnosis but for planning and evaluating 
interventions. Here’s where AI steps in—it’s revolutionizing surgical process by improving image segmentation and 
pattern recognition and automating repetitive tasks and slashing computation time.(22) Abdominal reconstruction 
future using AI algorithms and advanced technologies will be focusing more on optimizing vascularized flap 
procedures with better precision.(23) AI can predict flap viability by analyzing patient data and enhance surgical 
planning with 3D modeling and monitoring post-op recovery through real-time imaging to improve functionality.
(24) Current research explore machine learning for flap perfusion assessment and robotic-assisted microsurgery 
along with use of predictive algorithms to reduce human error.(25) Ongoing studies are investigating AI’s role 
in improving postoperative functional restoration through targeted rehabilitation protocols. Machine learning 
models such as deep neural networks are being trained to predict the success of vascularized flaps by analyzing 
preoperative imaging and patient-specific factors e.g., age, or related comorbidities. Da Vinci robot enable 
greater precision in flap dissection and suturing and now is being used for complication management and 
recovery time. AI-driven imaging tools such as indocyanine green (ICG) fluorescence imaging assess blood 
flow in real time to ensure adequate flap perfusion during surgery. Wearable sensors with AI algorithms track 
physiological parameters, for instance, oxygen levels, to detect early signs of complications which determine 
surgical risks before operations.(26,27)

CONCLUSIONS 
From the above research, we can conclude artificial intelligence has become an important part of post-

management of vascular flap reconstruction in abdominal surgeries by enhancing function restoration. We 
discussed it aids in monitoring tissue perfusion and early detection of complications like ischemia, necrosis, or 
thrombosis using real-time imaging and predictive analytics and AI algorithms analyze patient data to optimize 
recovery plans, personalize treatments, and adjust interventions for better outcomes. It is known that AI-
driven models can improve surgical precision in vascular anastomosis while machine learning helps predict 
complications, guiding early interventions to improve flap viability and functional outcomes in abdominal 
reconstruction which accelerates recovery and minimizes post-operative complications. 
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