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ABSTRACT

Introduction: obesity has become a major global issue since it can increase the risk of fatal disease. Genetic 
variation in the vitamin D receptor (VDR) gene is a potential candidate for obesity, though findings are 
inconclusive. 
Objectives: this meta-analysis aims to determine the association between VDR polymorphisms and obesity 
risk.
Method: all relevant studies from 1990 to January 2024 were screened using PubMed, Web of Science, 
Science Direct, and Scopus. This meta-analysis included studies meeting PROSPERO-registered eligibility 
criteria. Pooled odds ratios (OR) with 95 % confidence intervals (CI) for six VDR gene polymorphisms (BsmI, 
FokI, TaqI, ApaI, and Cdx2) were generated using RevMan 5.4.
Results: this meta-analysis included 23 studies with 5715 obese/overweight and 4887 non-obese individuals 
from China, Malaysia, Egypt, Turkey, India, Iran, UAE, Saudi Arabia, Czech Republic, Greece, USA, Denmark, 
Hungary, and Belgium. The findings show an association between VDR ApaI polymorphism and reduced obesity 
risk in homozygous models [aa vs. AA: OR=0,76, CI=0,60-0,97; P=0,03]. The TaqI variant is linked to increased 
obesity risk in Europeans under allelic [t vs. T: OR=1,33, CI=1,11-1,60; P=0,002], homozygous [tt vs. TT: 
OR=1,68, CI=1,13-2,50; P=0,010], dominant [tt vs. TT+Tt: OR=1,47, CI=1,07-2,03; P=0,02], and recessive 
[Tt+tt vs. TT: OR=1,43, CI=1,08-1,89; P=0,01] models.
Conclusions: this meta-analysis suggests the aa genotype of VDR ApaI polymorphism may protect against 
obesity across populations. In Europeans, the t allele of VDR TaqI polymorphism is identified as an obesity 
risk factor.
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RESUMEN

Introducción: la obesidad se ha convertido en un problema mundial importante, ya que puede aumentar el 
riesgo de enfermedades mortales. La variación genética en el gen del receptor de vitamina D (VDR) es un 
candidato potencial para la obesidad, aunque los hallazgos no son concluyentes.
Objetivos: este metanálisis tiene como objetivo determinar la asociación entre los polimorfismos del VDR y 
el riesgo de obesidad.
Método: todos los estudios relevantes desde 1990 hasta enero de 2024 se examinaron mediante PubMed, 
Web of Science, Science Direct y Scopus. Este metanálisis incluyó estudios que cumplían los criterios de 
elegibilidad registrados en PROSPERO. Se generaron razones de probabilidades (OR) agrupadas con intervalos 
de confianza (IC) del 95 % para seis polimorfismos del gen VDR (BsmI, FokI, TaqI, ApaI y Cdx2) utilizando 
RevMan 5.4.
Resultados: este metanálisis incluyó 23 estudios con 5715 individuos obesos/con sobrepeso y 4887 no obesos 
de China, Malasia, Egipto, Turquía, India, Irán, Emiratos Árabes Unidos, Arabia Saudita, República Checa, 
Grecia, Estados Unidos, Dinamarca, Hungría y Bélgica. Los hallazgos muestran una asociación entre el 
polimorfismo VDR ApaI y un menor riesgo de obesidad en modelos homocigotos [aa vs. AA: OR=0,76, IC=0,60-
0,97; P=0,03]. La variante TaqI está vinculada a un mayor riesgo de obesidad en europeos bajo alelo [t vs. T: 
OR=1,33, IC=1,11-1,60; P=0,002], homocigoto [tt vs. TT: OR=1,68, IC=1,13-2,50; P=0,010], dominante [tt vs. 
TT+Tt: OR=1,47, IC=1,07-2,03; P=0,02] y modelos recesivos [Tt+tt vs. TT: OR=1,43, IC=1,08-1,89; P=0,01].
Conclusiones: este metanálisis sugiere que el genotipo aa del polimorfismo ApaI del VDR puede proteger 
contra la obesidad en distintas poblaciones. En los europeos, el alelo t del polimorfismo TaqI del VDR se 
identifica como un factor de riesgo de obesidad.

Palabras clave: Genética; Metanálisis; Obesidad; Polimorfismo; Receptor de Vitamina D.

INTRODUCTION
Obesity is a condition characterized by an increase in body weight due to the accumulation of fat in 

the body. Obesity occurs when food intake and energy expenditure are out of balance. Multiple variables, 
including genetic, environmental, and psychological ones, contribute to the development of obesity.
(1) According to data from the Centers for Disease Control and Prevention (CDC) for 2020-2022, obesity 
prevalence among adults in all states and territories in the United States was more than 20 %. By ethnicity, 
the prevalence of obesity among non-Hispanic American Indian or Alaska Native people is at least 35 % in 
33 of the 47 states. Additionally, there were differences in the prevalence of obesity among young adults 
depending on their age group, with 20,5 % between the ages of 18 and 24 and 39,9 % between the ages 
of 45 and 54. However, there is no apparent difference in this prevalence between men and women.(2) In 
Indonesia, the percentage of obese individuals over the age of 18 rose from 14,8 % in 2013 to 21,8 % in 
2018.(3) Respectively, obesity may raise the risk of several diseases, including type 2 diabetes mellitus (DM), 
cardiovascular disease, cerebrovascular disease, and numerous forms of cancer.(4) Therefore, the increasing 
prevalence of obesity and its accompanying complications create a socio-economic and psychological burden 
for families, communities, and countries.(5)

Chromosome abnormalities, single gene disorders, polygenic obesity, and obesity syndromes connected 
to other phenotypic abnormalities can all cause obesity.(6) Data from genome-wide association studies state 
that nine gene loci are known to cause monogenic obesity, and 58 loci are involved in polygenic forms of 
obesity.(7) Few cases of obesity are brought on by chromosomal abnormalities or mutations, such as the 2-3 
% reported in cases of mutations in the pro-opiomelanocortin (POMC), leptin receptor (LEPR), leptin protein 
(LEP), and melanocortin 4 receptor (MC4R) genes.(8,9) Single nucleotide polymorphisms in genes, including the 
LEP, LEPR, insulin receptor (INSR), and other genes have been linked to an increased risk of obesity in some 
populations,(10,11) with the polymorphism in the VDR gene being the most recent detected to be associated 
with obesity.(12,13)

Calcium homeostasis and bone mineralization are the two most well-known biological functions of vitamin 
D.(14) However, VDR is also important for many other cellular activities, and it has been discovered in almost all 
cell types. Therefore, the epidemic of vitamin D deficiency may have a significant role in some obesity-related 
issues, including obesity and metabolic syndrome. Due to the widespread presence of VDRs in numerous body 
tissues, gene polymorphisms in these receptors may regulate the biological function of vitamin D as well as 
predispose to obesity.(15) The VDR genes contain numerous polymorphisms that can alter the activity level of 
VDR. Only five of the 470 known Single nucleotide polymorphisms (SNP) at the VDR locus—Cdx2 (rs11568820), 
FokI (rs2228570), TaqI (rs731236), BsmI (rs1544410), and ApaI (rs7975232)—have received extensive research 
attention because of their impacts on a variety of physiological and pathological phenotypes.(16,17,18) They are 
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situated in different sites of chromosome 12q. Cdx2 is located in the exon 1 promoter region.(19) FokI is found 
in exon 2, near the 5’ untranslated region within the VDR DNA-binding domain. TaqI is established in exon 9, 
while BsmI and ApaI are placed on intron 8. They are found near the 3′ untranslated region.(20)

Numerous genetic association studies between the prevalence of obesity and the VDR gene polymorphism 
have produced contradictory or ambiguous results.(21,22,23) Several studies have examined the association 
between these polymorphisms and the likelihood of becoming obese using this conceptual framework. 
However, more studies in various populations are required to understand the effect of these SNPs on the 
propensity to become obese. As a result of the foregoing, this meta-analysis was conducted to examine 
the association between the risk of obesity and specific polymorphisms in the VDR gene, specifically BsmI 
(rs1544410), TaqI (rs731236), ApaI (rs7975232), FokI (rs2228570), and Cdx2 (rs11568820).

METHOD
Search strategy

All related references were retrieved from PubMed, Web of Science, Science Direct, and Scopus from 
1990 until January 2024. The search strategy involved a combination of the following keywords i.e Obesity 
(OR Obes* OR Pediatric obes* OR Adult obes* OR Central obes* OR Abdominal obes* OR Adiposity OR BMI OR 
Overweight) AND Receptors, calcitriol (OR Cholecalciferol OR Calcitriol receptor* OR Vitamin D receptor* 
OR Cholecalciferol receptor* OR Vitamin D) AND Polymorphism, genetic OR Polymorphism, single nucleotide 
OR Genetic variation OR Genetic polymorphism* OR Single nucleotide polymorphism* OR Genetic variation* 
OR Polymorphism* OR Mutation OR Variant* OR BsmI OR ApaI OR FokI OR TaqI OR Cdx2. The identification of 
any additional eligible studies was also manually screened through website searching to retrieve potential 
articles. Ten reviewers performed data searching independently, and any discrepancies were settled by 
discussion and consensus among them. 

Protocol and Guidance
This search method adhered to the Preferred Reporting Items for Systematic Review and Meta-Analysis 

(PRISMA) guidelines. The protocol for this meta-analysis has been registered in PROSPERO (registration 
number CRD42021271339). Ethical approval and patient consent were not required because all results and 
analyses were obtained from previously published studies. 

Selection criteria
All published articles were selected based on the following inclusion criteria: 1. Case-control or cross-

sectional studies; 2. Evaluating the association between VDR polymorphisms and obesity; 3. Overweight and 
obesity were defined according to the respective criteria of included studies. Body Mass Index (BMI) > 23 kg/
m2, or > 25 kg/m2, or > 25 kg/m2 to < 30 kg/m2 was categorized as overweight and > 28 kg/m2 or > 30 kg/
m2 was classified into obese for adults and not pregnant. While, for children or adolescents, overweight and 
obesity were defined as ≥85th to <95th and ≥95th percentile of BMI, respectively; 4. Genotype frequencies were 
provided for calculating the odds ratio (OR) with 95 % confidence interval (CI); 5. The distribution of VDR 
polymorphism met the criteria for the Hardy-Weinberg Equilibrium (HWE); 6. Full-text was available; and 7. 
English articles.

The duplicated articles, non-human studies, abstracts, case reports/series, reviews, meta-analysis, 
editorial articles, and studies with incomplete data were excluded from this meta-analysis.

Data extraction
A standardized form was used to obtain the full description of study characteristics, i.e., first author, 

publication year, country, study design, sample size, obesity criteria, gender, age, genotype identification 
method, source of control, HWE test, and polymorphism loci. The genotypes of 5 VDR gene polymorphisms 
(BsmI, FokI, TaqI, ApaI, and Cdx2) were defined by B, F, T, A, and G, respectively if the restriction sites for 
corresponding enzymes were absent. Otherwise, b,f,t,a,g were used. The label of BsmI [G (or C) / A (or 
T)] corresponds to BsmI (b/B), FokI [A (or T) / G (or C)] corresponds to FokI (f/F), TaqI [G (or T) / A (or C)] 
corresponds to TaqI (t/T), ApaI [G (or C) / A (or T)] corresponds to ApaI (a/A), and for Cdx2, there is two 
allelic group based on presence of A or G nucleotide.

Quality assessment
Three independent reviewers applied the Newcastle-Ottawa Scale (NOS) to evaluate the quality of the 

included studies. The three aspects used as indicators were: selection, comparability, and exposure/outcome. 
The study with > 6 stars was considered to have high quality.

Statistical analysis
The data were analyzed via Review Manager 5.4 (Cochrane Collaboration, UK). The associations between 
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obesity risk and VDR polymorphisms were determined by computing the crude Odds Ratio (OR) and 95 % CI. 
We evaluated six genetic models (allelic, homozygous, heterozygous, dominant, additive, and recessive 
models). Events were defined as the polymorphism genotypes for each analysis model. Test for overall effect 
used the pooled OR and was considered significant if p < 0,05. The subgroup analysis was also carried out 
based on ethnicity (Asian and European). Heterogeneity among studies was quantified statistically using Chi2 
and the I2. A random-effects (heterogeneous, p<0,10 and I2>50 %) or fixed-effects (homogeneous, p>0,10 and 
I2<50 %) model was used to estimate the pooled effects. Funnel plot asymmetry was applied to determine 
publication bias. Sensitivity analysis was done to evaluate whether any individual study had a substantial 
impact on the results by eliminating each study at a time.

RESULTS

Characteristics of eligible studies
Initially, 18706 studies were collected through database searching engine and 11382 studies were removed 

after checking for duplicates and marked as ineligible by automation tools. Further screening of the title and 
abstract was conducted and 6913 were eliminated due to insufficient data, unqualified articles, irrelevant 
study design, topics, and population. The rest of the articles were assessed for eligibility by checking the full 
text and 386 articles were eliminated due to irrelevant SNPs, diseases, or conditions; insufficient genotyping 
data or frequencies; irrelevant study design and HWE test result. After combining the results from database 
and website searching, we found 23 articles to be finally included. The PRISMA flow chart for the detailed 
study selection is shown in figure 1.

Figure 1. The PRISMA flow chart for the detailed study selection

This meta-analysis incorporated a total of 23 case-control and cross-sectional studies, encompassing 
5715 obese/overweight and 4887 non-obese individuals who adhered to predefined inclusion and exclusion 
criteria (table 1). The association of VDR BsmI polymorphism with obesity risk was assessed by ten 
studies,(17,22,24,25,26,27,28,29,30,31) the VDR ApaI polymorphism by ten studies,(17,18,22,27,32,33,34,35,36,37) VDR FokI polymorphism 
by twelve studies,(17,18,24,27,29,32,35,38,39,40,41,42) VDR TaqI polymorphism by ten studies(15,17,18,27,32,33,34,36,38,39) and VDR 
Cdx2 polymorphism by two studies.(17,18) The characteristics of all included articles are listed in table 1. Most 
of the included studies had high quality based on NOS criteria (table 1).
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Table 1. Study characteristics of each article included in our meta-analysis

No First author Year Study design Country Population Sample 
size

Case 
(n=5715)

Control 
(n=4887) Gender Genotype 

method
Genetic 

polymorphisms NOS

1. Gariballa, et al.(38) 2023 Cross sectional United Arab Emirates Adult 266 201 65 Male & Female PCR-TaqMan 
Genotyping Assay

FokI, TaqI 10

2. Bagci, et al.(32) 2023 Cross sectional Turkey Adults 139 68 71 Male & Female PCR-RFLP FokI, TaqI, ApaI 7

3. Wang, et al.(17) 2021 Case control China Children 191 106 85 Male & Female PCR sequencing BsmI, FokI, 
TaqI, ApaI, Cdx2

7

4. Zakaria, et al.(24) 2021 Case control Malaysia Adults 117 54 63 Male & Female PCR-RFLP BsmI, FokI 6

5. Hassan, et al.(33) 2021 Cross sectional Egypt Adults 97 66 31 Female PCR-RFLP TaqI, ApaI 7

6. Bhatt et al.(39) 2021 Cross sectional India Adults 300 230 70 Male & Female PCR-TaqMan 
Genotyping Assay

FokI, TaqI 10

7. Rashidi et al.(34) 2021 Case control Iran Adults 167 87 80 Male & Female PCR-RFLP TaqI, ApaI 6

8. Xie, et al.(40) 2021 Cross sectional China Childrens 452 225 227 Male & Female PCR-RFLP FokI 10

9. Hussain, et al.(41) 2018 Case control United Arab Emirates Adults 340 97 243 Female PCR-RFLP FokI 6

10. Rahmadhani, et al.(25) 2017 Cross sectional Malaysia Children 718 183 535 Male & Female Sequenom 
MassARRAY

BsmI 7

11. Al-Hazmi, et al.(22) 2017 Case control Saudi Arabia Adults 300 200 100 Male PCR-RFLP BsmI, ApaI 8

12. Bagheri, et al.(26) 2017 Case control Iran Adults 65 38 27 Female PCR sequencing BsmI 9

13. Bienertová-Vašků, et 
al.(27)

2017 Cross sectional Czech Republic Adults 882 511 371 Male & Female PCR-RFLP BsmI, FokI, 
TaqI, ApaI

7

14. Fan, et al.(35) 2015 Case control China Adults 529 245 284 Male & Female PCR-RFLP FokI, ApaI 9

15. Zhou, et al.(18) 2015 Cross sectional China Adults 181 99 82 Male PCR-RFLP FokI, TaqI, ApaI, 
Cdx2

8

16. El-Shal, et al.(36) 2013 Case control Egypt Adults 300 235 65 Female PCR-RFLP TaqI, ApaI 7

17. Vasilopoulos, et al.(15) 2013 Case control Greece Adults 184 82 102 Male & Female PCR -RFLP TaqI 6

18. Mahmoudi, et al.(28) 2011 Case control Iran Adults 904 447 457 Male & Female PCR-RFLP BsmI 7

19. Mahmoudi, et al.(37) 2010 Case control Iran Adults 160 68 92 Male & Female PCR-RFLP ApaI 7

20. Slattery, et al.(42) 2004 Case control United States Adults 3213 2135 1078 Male & Female PCR-RFLP FokI 6

21. Tofteng, et al.(29) 2002 Cross sectional Denmark Adults 429 188 241 Female PCR-RFLP BsmI, FokI 6

22. Speer, et al.(30) 2001 Case control Hungary Adults 167 29 138 Male & Female PCR-RFLP BsmI 7

23. Geusens, et al.(31) 1997 Cross sectional Belgium Elderly 501 121 380 Female PCR-RFLP BsmI 10

Nota: PCR-RFLP – polymerase chain reaction-restriction fragment length polymorphism; NOS – Newcastle-Ottawa Scale.
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The analyses of the association between VDR polymorphism and obesity risk in all genetic models and 
subgroup analyses are displayed in table 2 and 3.

Association between VDR BsmI polymorphism and risk of obesity 
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Figure 2. Forest plot of the association between VDR gene BsmI polymorphism and obesity risk in all population under: (a) b 
vs. B model; (b) bb vs. BB model; (c) Bb vs. BB model; (d) bb vs. Bb model; (e) bb vs. BB+Bb model; (f) Bb+bb vs. BB model

Analysis of the association between BsmI polymorphism and risk of obesity involved ten studies with 1877 
cases and 2397 controls. The heterogeneity test and association between BsmI SNP and propensity to obesity is 
exhibited in table 2. Our meta-analysis found no significant association between VDR BsmI polymorphism and 
obesity risk in all genetic models and subgroup analyses (table 2 and 3, figure 2). 

Association between the VDR ApaI polymorphism and risk of obesity 
The association between VDR ApaI polymorphism and risk of obesity was analyzed from ten studies, with 

1685 cases and 1261 controls included (table 1). The results of heterogeneity and association tests can be seen 
in table 2. There was a significant association [p = 0,03] in homozygous model analysis (aa vs. AA) with OR 0,76 
[95 % CI 0,60 - 0,97], which implies the aa genotype of ApaI may confer a protective effect on obesity in overall 
populations (figure 3). Furthermore, in subgroup analysis based on Asian or European populations, no significant 
correlation was found between VDR ApaI polymorphism and the risk of obesity (table 3, annexes).
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Figure 3. Forest plot of the association between VDR gene ApaI polymorphism and obesity risk in all population under: (a) 
a vs. A model; (b) aa vs. AA model; (c) Aa vs. AA model; (d) Aa vs. AA model; (e) aa vs. Aa model; (f) aa vs. AA+Aa model; 

(g) Aa+aa vs. AA model

Association between the VDR FokI polymorphism and risk of obesity 
Twelve studies were included to analyze the association between the VDR FokI polymorphism and risk 

of obesity with 4159 cases and 2880 controls. As FF and Ff+ff genotypes were the only data available in the 
paper, Hussain’s study from 2018 was only included in one subgroup analysis (FF vs. Ff+ff). The heterogeneity 
and association test can be seen in table 2 and figure 4. Further analysis of subgroups showed no correlation 
between VDR FokI polymorphism and risk of obesity (table 3, annexes). 
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Figure 4. Forest plot of the association between VDR gene FokI polymorphism and obesity risk in all population under: (a) 
f vs. F model; (b) ff vs. FF model; (c) Ff vs. FF model; (d) ff vs. Ff model; (e) ff vs. FF+Ff model; (f) Ff+ff vs FF model

Association between TaqI polymorphism and risk of obesity 
Ten studies with 1685 cases and 1022 controls were included to determine the association between TaqI SNP 

and obesity risk. Due to limited numbers of case for tt genotype in the studies by Hassan et al (2021) and Zhou et 
al (2014), they could only be used for allele model (t vs T), heterozygote model (Tt vs TT) and recessive model 
(Tt + tt vs TT) analysis. As shown in table 2, there was no significant association between TaqI polymorphism 
and the risk of obesity in all genetic models (figure 5). Furthermore, subgroup analysis was performed based on 
ethnicity. TaqI polymorphism significantly increased the risk of obesity in European population in allele model 
(t vs T) [p= 0,002], homozygote (tt vs TT) [p=0,010], dominant (tt vs TT + Tt) [p=0,02] and recessive (Tt + tt vs 
TT) [p=0,01] as shown in table 3 and annexes.
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Figure 5. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk in all population under: (a) 
t vs. T model; (b) tt vs. TT model; (c) Tt vs TT model; (d) tt vs Tt model; (e) tt vs TT + Tt model; (f) Tt + tt vs TT model
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Association between the VDR Cdx2 polymorphism and risk of obesity 
A total of 205 cases and 167 controls from two different studies were included to determine the association 

between VDR Cdx2 polymorphism and the risk of obesity. However, there was no association between Cdx2 
polymorphism and the risk of obesity in all models (table 2 and annexes). The subgroup analysis could not be 
performed because of the limited number of studies being included. 

Table 2. Overall meta-analysis of polymorphisms in VDR genes

SNPs Comparisons Qualified 
studies

Test of association
Model

Test of 
heterogeneity

OR [95 % CI] p p-value I2 (%)

BsmI b vs. B 10 0,98 [0,89 - 1,08] 0,63 F 0,77 0

bb vs. BB 10 0,95 [0,77 - 1,17] 0,63 F 0,52 0

Bb vs. BB 10 0,91 [0,75 - 1,11] 0,35 F 0,74 0

bb vs. Bb 10 1,02 [0,88 - 1,18] 0,80 F 0,19 28

bb vs. BB+Bb 10 0,99 [0,86 - 1,14] 0,91 F 0,31 14

Bb+bb vs. BB 10 0,93 [0,78 - 1,12] 0,45 F 0,83 0

ApaI a vs. A 10 0,93 [0,83 - 1,05] 0,25 F 0,06 45

aa vs. AA 10 0,76 [0,60 - 0,97] 0,03* F 0,17 30

Aa vs. AA 10 0,96 [0,70 - 1,34] 0,83 R 0,006 61

aa vs. Aa 10 0,96 [0,78 - 1,17] 0,65 F 0,07 44

aa vs. AA + Aa 10 0,91 [0,76 - 1,10] 0,34 F 0,14 33

Aa+aa vs. AA 10 0,93 [0,70 - 1,25] 0,64 R 0,01 57

FokI f vs. F 11 1,01 [0,93 - 1,09] 0,89 F 0,42 2

ff vs. FF 11 1,02 [0,87 - 1,20] 0,80 F 0,46 0

Ff vs. FF 11 0,97 [0,87 - 1,08] 0,54 F 0,26 19

ff vs. Ff 11 1,07 [0,92 - 1,25] 0,36 F 0,34 11

ff vs. FF+Ff 11 1,05 [0,91 - 1,22] 0,48 F 0,37 8

Ff+ff vs. FF 12 0,99 [0,89 - 1,09] 0,78 F 0,35 10

TaqI t vs. T 10 1,09 [0,87 - 1,36] 0,46 R 0,02 54

tt vs. TT 8 1,22 [0,91 - 1,64] 0,19 F 0,34 11

Tt vs. TT 10 1,13 [0,79 - 1,61] 0,52 R 0,03 52

tt vs. Tt 8 1,04 [0,81 - 1,34] 0,74 F 0,07 46

tt vs. TT+Tt 8 1,11 [0,88 - 1,41] 0,37 F 0,13 38

Tt+tt vs. TT 10 1,13 [0,81 - 1,57] 0,48 R 0,03 51

Cdx2 A vs. G 2 1,23 [0,92 - 1,65] 0,16 F 0,32 0

AA vs. GG 2 1,46 [0,82 - 2,59] 0,20 F 0,36 0

GA vs. GG 2 1,20 [0,76 - 1,90] 0,44 F 0,62 0

AA vs.GA 2 1,21 [0,70 - 2,12] 0,49 F 0,59 0

AA vs. GG+GA 2 1,32 [0,79 - 2,20] 0,29 F 0,42 0

GA+AA vs. GG 2 1,28 [0,84 - 1,97] 0,25 F 0,46 0

Note: OR – odds ratio; CI – confidence interval; R – random-effects; F – fixed-effects.

Table 3. Subgroup analyses of polymorphism in VDR gene based on ethnicity

SNPs Comparisons

Ethnicity

Asian European

N OR (95 % CI) p N OR (95 % CI) p

BsmI b vs. B 6 1,01 [0,88 - 1,16] 0,83 4 0,94 [0,82 - 1,08] 0,36

 bb vs. BB 6 1,05 [0,77 - 1,44] 0,76 4 0,87 [0,65 - 1,16] 0,34

 Bb vs. BB 6 0,92 [0,70 - 1,20] 0,52 4 0,91 [0,69 - 1,20] 0,49

 bb vs. Bb 6 1,08 [0,88 - 1,32] 0,47 4 0,96 [0,77 - 1,19] 0,70
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 bb vs. BB+Bb 6 1,05 [0,86 - 1,27] 0,64 4 0,94 [0,76 - 1,15] 0,52

 Bb+bb vs. BB 6 0,97 [0,75 - 1,26] 0,83 4 0,89 [0,68 - 1,16] 0,38

ApaI a vs. A 6 0,91 [0,71 - 1,18] 0,48 2 0,89 [0,73 - 1,09] 0,25

 aa vs. AA 6 0,74 [0,43 – 1,26] 0,27 2 0,74 [0,49 - 1,13] 0,17

 Aa vs. AA 6 0,76 [0,47 - 1,25] 0,28 2 0,95 [0,68 - 1,31] 0,74

 aa vs. Aa 6 1,14 [0,88 - 1,46] 0,32 2 0,83 [0,58 - 1,20] 0,33

 aa vs. AA + Aa 6 1,05 [0,83 - 1,32] 0,71 2 0,81 [0,57 - 1,14] 0,22

 Aa+aa vs. AA 6 0,79 [0,49 - 1,26] 0,32 2 0,89 [0,66 - 1,22] 0,48

FokI f vs. F 9 0,98 [0,87 - 1,10] 0,77 2 1,02 [0,92 - 1,13] 0,66

 ff vs. FF 9 0,97 [0,78 - 1,22] 0,80 2 1,07 [0,86 - 1,34] 0,55

 Ff vs. FF 9 0,93 [0,79 - 1,10] 0,42 2 0,99 [0,86 - 1,15] 0,92

 ff vs. Ff 9 1,06 [0,86 - 1,32] 0,57 2 1,08 [0,87 - 1,35] 0,47

 ff vs. FF+Ff 9 1,03 [0,84 - 1,26] 0,77 2 1,08 [0,87 - 1,33] 0,48

 Ff+ff vs. FF 10 0,96 [0,83 - 1,11] 0,58 2 1,01 [0,88 - 1,16] 0,90

TaqI t vs. T 5 1,06 [0,71 - 1,59] 0,77 3 1,33 [1,11 -1,60] 0,002*

 tt vs. TT 4 0,91 [0,51 - 1,60] 0,73 3 1,68 [1,13 - 2,50] 0,010*

 Tt vs. TT 5 1,06 [0,49 – 2,31] 0,88 3 1,34 [1,00 - 1,80] 0,05

 tt vs. Tt 4 0,84 [0,52 - 1,38] 0,50 3 1,32 [0,94 - 1,86] 0,11

 tt vs. TT+Tt 4 1,00 [0,64 - 1,58] 0,99 3 1,47 [1,07 - 2,03] 0,02*

 Tt+tt vs. TT 5 1,05 [0,52 - 2,11] 0,89 3 1,43 [1,08 - 1,89] 0,01*

Publication bias
Visual inspection of the funnel plot was performed to assess the potential publication bias among studies 

(annexes). The analysis outcomes showed that there was no obvious publication bias for BsmI and FokI. In 
SNP TaqI and ApaI funnel plot analyses, some outliers were found. However, after omitting them from the 
analyses, the pooled results remain unchanged. It was found that the study from Wang et al (2021) was the 
outlier in heterozygous (Tt vs TT; tt vs Tt) and recessive (Tt + tt vs TT) models of SNP TaqI analysis, and also in 
heterozygous (Aa vs AA) and recessive (Aa+aa vs AA) models of SNP ApaI analysis. The study from El-Shal et al 
(2013) was also an outlier in the heterozygous (aa vs Aa) model of SNP ApaI analysis. 

Sensitivity analysis
As heterogeneity was found in the statistical analysis, sensitivity analysis was further conducted to evaluate 

the stability of the overall results by removing each study successively. In this meta-analysis, eliminating each 
study did not result in significant alterations in the pooled OR, implying that no single study changed the 
statistical significance of the overall conclusion.

DISCUSSION
Based on twenty-three studies, this updated meta-analysis specifically explores the relationship between 

genetic variation of the VDR gene and obesity risk in all populations. Vitamin D has essential roles in metabolism. 
Low vitamin D level is associated with high inflammation, a condition related to obesity. On the contrary, the 
supplementation of vitamin D can reduce the levels of pro-inflammatory markers and inflammation-related 
diseases, such as cardiovascular diseases, hypertension, dyslipidemia, type 2 DM, and others.(43) Previous research 
has also demonstrated that vitamin D insufficiency and enhanced VDR expression within subcutaneous adipose 
tissue (SAT) are common features of human obesity. Adipose tissue overexpression of human VDR results in 
increased fat mass (FM), lower glucose tolerance, and higher energy expenditure.(44) Intriguingly, the imbalance 
in VDR expression is also associated with increased production of pro-inflammatory cytokines through the 
modulation of inflammasome.(21) Chromosome 12 (12q12-q14) is the specific genomic location of the VDR gene. 
The ApaI (rs7975232) and TaqI (rs731236) variants are identified near the 3’ untranslated region in intron 8 and 
exon 9, respectively.(45,46) Point mutations commonly occur in this region. The change of untranslated region would 
influence the transcriptional regulation, mRNA stability or protein translation efficiency which eventually affects 
the VDR protein levels.(47)

Genetic association studies are a robust method for identifying genes that make individuals more susceptible 
to prevalent diseases. Nevertheless, the findings of these investigations lack reliable reproducibility. To address 
the constraints of individual research, it is necessary to employ bigger sample sizes or do a meta-analysis. Meta-
analysis could merge findings from multiple-research on a certain subject, thereby enhancing statistical power 
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and accuracy. Genetic association studies do not adopt a specific model, and thus multiple genetic models need 
to be examined.(48) Therefore, in this study, six genetic models (allelic, homozygous, heterozygous, dominant, 
additive, and recessive models) were applied to increase the robustness of the analysis.

According to our findings, there was no association between obesity risk and BsmI, FokI and Cdx2 polymorphisms. 
However, this study presented that the ApaI variant was statistically associated with lowering the risk of obesity 
on a homozygous model in overall populations. A prior investigation on 668 Iranian populations was in line with our 
findings which found the association between VDR gene polymorphisms with the anthropometric and biochemical 
parameters related to obesity. In this study, individuals who carried a allele had lower serum levels of fasting 
blood glucose (FBG) and BMI.(34) Wang, et al. (2021) reported that the AA genotype significantly elevated four times 
the risk of abdominal obesity and plasma glucose levels in Chinese children. The AA genotype of the ApaI SNP was 
more frequently found in overweight/obese than in the control groups, in which the serum 25-hydroxyvitamin D 
(25(OH)D) levels were considerably lower in overweight/obese children.(17) A similar study in Lebanese students 
showed that ApaI was linked with 25(OH)D levels, where the TT genotype had significantly lower levels than those 
with the GG genotype.(49) Thai adult populations with genotypes TG and TG+TT of rs7975232 were significantly 
associated with an increased risk of metabolic syndrome compared to GG.(50) In a study of 131 young female 
students in Saudi Arabia, minor allele A of rs 7975232 (ApaI) might be a protective factor against increased BMI.(51) 
According to those studies, it can be concluded that the aa genotype provides a protective effect against adiposity 
and glucose metabolism. The possible reason that might explain this condition is probably the association of 
genetic variations of VDR with inflammation, oxidative stress, and lipid metabolism. 

A cross-sectional study of 155 Caucasian Spanish children who were vitamin D sufficient also discovered that 
the minor allele A of ApaI plays a role in protecting from inflammatory processes and oxidative stress through the 
decline of serum tumor necrosis factor-α (TNF-α) and 8-isoprostaglandin F2α, respectively.(52) Vitamin D alleviates 
oxidative stress and suppresses the nuclear factor-kappa β (NF-kβ) signaling pathway, and eventually restricts the 
inflammation process.(53,54) Moreover, vitamin D protects against obesity by enhancing adipocyte metabolic activity, 
inhibiting fat storage and inducing lipolysis via increasing Nicotinamide adenine dinucleotide (NAD) concentration 
and SIRT1 activity.(55) The location of ApaI SNP has no effect on the structure and amino acid sequence of the VDR 
protein. Nevertheless, it has potential to modify the stability of the VDR mRNA and/or disrupt VDR transcription. 
Altered mRNA stability, leading to decreased translation of the VDR protein, will result in diminished vitamin D 
responses. In this regard, the ApaI polymorphism may act as an intronic enhancer by mediating alternative splicing 
of the VDR mRNA, and/or it may be important as an enhancer that elevates gene transcription.(52)

On the other hand, current findings demonstrated that the VDR TaqI polymorphism was related to an enhanced 
risk of obesity under allelic, homozygous, dominant, and recessive models in the European populations. Our 
findings are supported by a multicenter study on 553 obese European populations that revealed the VDR TaqI G 
allele in the AG and GG genotypes (dominant model analysis), which has significantly higher means of BMI, waist 
circumference, and fat mass compared to non-carriers.(44) Previous studies reported the association between 
vitamin D levels and obesity. Vitamin D deficiency or insufficiency is mostly found in children, adolescents, and 
adults with overweight or obesity in several European countries.(56,57,58) Vitamin D deficiency is also related to 
the increased risk of metabolic syndrome, such as central obesity and low HDL, in a cross-sectional study of 697 
Caucasian women in Russia.(56) A VDR gene polymorphism study in the obese Greek population reported that the 
TaqI t allele doubled the risk of vitamin D deficiency, while individuals with Tt genotype had a 3,5-fold greater risk 
of low 25(OH)D3 levels.(59) Individuals from Northern and Central Greece with the T allele of TaqI contributed to a 
raised 3 kg/m2 BMI per risk allele, resulting in a twice-higher risk of obesity. Furthermore, homozygotes with the 
C allele had higher triglyceride and HDL levels than heterozygotes and homozygotes.(15) The study of 882 Central 
European Caucasian participants of the Czech presented TaqI GG genotype was associated with greater central 
adiposity compared to the AA genotype.(27) A study by Abouzid et al (2021) observed the subjects in Poland with the 
TaqI genotype. He found that hypercholesterolemia and lower 25(OH)D3 levels were more frequently observed in 
the TT genotype than in the CC and TC genotypes.(60) A study in Turkey also found that obese individuals had lower 
osteocalcin levels than normal individuals.(61) Osteocalcin can improve insulin synthesis and insulin sensitivity 
in the pancreas as well as peripheral insulin target organs (adipose tissue, muscle tissue and liver), increase 
adiponectin, and reduce fat mass.(62) 

Our findings could explain that VDR plays a crucial role in lipid regulation, presumably through its action in 
adipocyte calcium metabolism. The lower vitamin D level triggers parathyroid hormone secretion, facilitating 
calcium influx into adipocytes and accelerating lipogenesis.(63) Vitamin D has a vital role in the modulation of 
adipokine formation and energy balance through the regulation of leptin synthesis.(64) Low vitamin D levels can 
also promote adipogenesis by affecting the transcription factors of preadipocyte cells, which enhance leptin 
levels. This condition reduces lipid oxidation in insulin-sensitive tissue and is related to higher free fatty acid and 
inflammatory cytokine levels, leading to lipotoxicity and insulin resistance.(65)

Another possible mechanism that could explain the contribution of VDR to obesity was demonstrated by a prior 
in vivo study on intestinal VDR knockout mice. This study found that activation of intestinal VDR affects energy and 
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controls lipid metabolism in extra-intestinal tissue, including adipose tissue and the liver, via suppression of the 
lipase regulator angiopoietin-like 4 (Angptl4). VDR has a substantial impact on the enlargement and inflammation 
of adipose tissue by upregulating the expression of the triglyceride synthesizing enzyme and the expression of 
inflammation markers (CC-chemokine ligand 2 and macrophage F4/80), along with a molecular shift toward a pro-
inflammatory state in adipose tissue. This similar condition was also observed in the liver, where VDR promotes 
fat accumulation and inflammation in this organ.(66)

The result of this study is in accordance with a previous meta-analysis by Chen et al (2019) which reported that 
VDR gene polymorphism was associated with obesity.(67) However, our study is more comprehensive by including 
more updated twenty-three studies from different countries that can robustly describe the effect of VDR gene 
polymorphisms on different ethnic groups. Moreover, we also have included the Cdx2 gene in the analysis, which 
was not included in the previous study. Another systematic review by Faghfouri has also determined the role 
of VDR polymorphism in obesity.(45) However, the study was inconclusive due to being conducted qualitatively 
without any meta-analysis. Hereby, this meta-analysis could provide a better understanding regarding the role of 
each VDR gene polymorphism in obesity. Most of the included study also had low risk of bias. This ensures that the 
studies included in our meta-analysis are more reliable and less prone to biases.

Nonetheless, this meta-analysis still had several limitations. First, there were only two included studies found 
for VDR Cdx2 polymorphism. Second, this study did not analyze other risk factors that can affect susceptibility to 
obesity, such as gender, age, ethnicity, and underlying disease that may contribute to obesity development. Third, 
this meta-analysis could not generate a per-patient haplotype analysis that can demonstrate the gene-gene and 
gene-environment interactions to provide a better understanding between VDR gene polymorphisms and obesity.  

CONCLUSIONS
In conclusion, this meta-analysis determined the role of aa genotype of VDR ApaI gene polymorphism as a 

protective effect on obesity in all the studied populations and t allele of VDR TaqI gene polymorphism as a risk 
factor related to obesity in the European population. Therefore, it is important to determine VDR genotypes 
in individuals in order to reduce the extent of complications and mortality trends in the obesity population, in 
particular for ApaI genotype for the studied populations and TaqI genotype for European population.
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ANNEXES

Supplementary information
Abbreviations 

R: Random-effects
F: Fixed-effects
BMI: Body Mass Index
CDC: Centers for Disease Control and Prevention
CI: Confidence Interval 
DM: Diabetes Mellitus
FBG: Fasting Blood Glucose
FM: Fat Mass 
HDL: High-Density Lipoprotein
HWE: Hardy-Weinberg Equilibrium
INSR: Insulin Receptor 
LEP: Leptin Protein 
LEPR: Leptin Receptor 
MC4R: Melanocortin 4 Receptor 
NAD: Nicotinamide Adenine Dinucleotide 
NOS: Newcastle-Ottawa Scale
25(OH)D: 25-hydroxyvitamin D 
OR: Odds Ratio
PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism
PCR: Polymerase Chain Reaction
POMC: Pro-Opiomelanocortin 
RLFP: Restriction Fragment Length Polymorphism
PRISMA: Preferred Reporting Items for Systematic Review and Meta-Analysis
SAT: Subcutaneous Adipose Tissue
SIRT: Sirtuin
SNP: Single nucleotide polymorphisms
TNF-α: Tumor Necrosis Factor-α
VDR: Vitamin D receptor

1. Vitamin D Receptor gene BsmI polymorphism

Figure 1.1. Forest plot of the association between VDR BsmI polymorphism and obesity risk under b vs. B model in Asian

Figure 1.2. Forest plot of the association between VDR BsmI polymorphism and obesity risk under b vs. B model in European
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Figure 1.3. Forest plot of the association between VDR BsmI polymorphism and obesity risk under bb vs. BB model in 
Asian

Figure 1.4. Forest plot of the association between VDR BsmI polymorphism and obesity risk under bb vs. BB model in 
European

Figure 1.5. Forest plot of the association between VDR BsmI polymorphism and obesity risk under Bb vs. BB model in 
Asian

Figure 1.6. Forest plot of the association between VDR BsmI polymorphism and obesity risk under Bb vs. BB model in 
European
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Figure 1.7. Forest plot of the association between VDR BsmI polymorphism and obesity risk under bb vs. BB+Bb model in 
Asian

Figure 1.8. Forest plot of the association between VDR BsmI polymorphism and obesity risk under bb vs. BB+Bb model in 
European

Figure 1.9. Forest plot of the association between VDR BsmI polymorphism and obesity risk under Bb+bb vs. BB model in 
Asian

Figure 1.10. Forest plot of the association between VDR BsmI polymorphism and obesity risk under Bb+bb vs. BB model in 
European
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2. Vitamin D Receptor gene ApaI polymorphism

Figure 2.1. Forest plot of the association between VDR ApaI polymorphism and obesity risk under a vs. A model in Asian

Figure 2.2. Forest plot of the association between VDR ApaI polymorphism and obesity risk under a vs. A model in 
European

Figure 2.3. Forest plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. AA model in Asian

Figure 2.4. Forest plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. AA model in 
European
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Figure 2.5. Forest plot of the association between VDR ApaI polymorphism and obesity risk under Aa vs. AA model in Asian

Figure 2.6. Forest plot of the association between VDR ApaI polymorphism and obesity risk under Aa vs. AA model in 
European

Figure 2.7. Forest plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. Aa model in Asian

Figure 2.8. Forest plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. Aa model in 
European
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Figure 2.9. Forest plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. AA+Aa model in 
Asian

Figure 2.10. Forest plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. AA+Aa model in 
European

Figure 2.11. Forest plot of the association between VDR ApaI polymorphism and obesity risk under Aa+aa vs. AA model in 
Asian

Figure 2.12. Forest plot of the association between VDR ApaI polymorphism and obesity risk under Aa+aa vs. AA model in 
European
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3. Vitamin D Receptor gene FokI polymorphism

Figure 3.1. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under f vs. F model in 
Asian

Figure 3.2. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under f vs. F model in 
European

Figure 3.3. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. FF model in 
Asian

Figure 3.4. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. FF model in 
European
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Figure 3.5. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under Ff vs. FF model in 
Asian

Figure 3.6. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under Ff vs. FF model in 
European

Figure 3.7. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. Ff model in 
Asian

Figure 3.8. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. Ff model in 
European
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Figure 3.9. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. FF+Ff model 
in Asian

Figure 3.10. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. FF+Ff 
model in European

Figure 3.11. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under Ff+ff vs FF model 
in Asian

Figure 3.12. Forest plot of the association between VDR gene FokI polymorphism and obesity risk under Ff+ff vs FF model 
in European
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4. Vitamin D Receptor gene TaqI polymorphism

Figure 4.1. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under t vs. T model in 
Asian

Figure 4.2. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under t vs. T model in 
European

Figure 4.3. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs. TT model in 
Asian

Figure 4.4. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs. TT model in 
European
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Figure 4.5. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under Tt vs TT model in 
Asian

Figure 4.6. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under Tt vs TT model in 
European

Figure 4.7. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs Tt model in 
Asian

Figure 4.8. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs Tt model in 
European

Figure 4.9. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs TT + Tt model 
in Asian
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Figure 4.10. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs TT + Tt 
model in European

Figure 4.11. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under Tt + tt vs TT 
model in Asian

Figure 4.12. Forest plot of the association between VDR gene TaqI polymorphism and obesity risk under Tt + tt vs TT 
model in European

5. Vitamin D Receptor gene Cdx2 polymorphism
5.1 Analysis of A vs G model

Figure 5.1. Forest plot of the association between VDR gene Cdx2 polymorphism and obesity risk under A vs G model
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5.2 Analysis of AA vs GG model

Figure 5.2. Forest plot of the association between VDR gene Cdx2 polymorphism and obesity risk under AA vs GG model

5.3 Analysis of GA vs GG model

Figure 5.3. Forest plot of the association between VDR gene Cdx2 polymorphism and obesity risk under GA vs GG model

5.4 Analysis of AA vs GA model

Figure 5.4. Forest plot of the association between VDR gene Cdx2 polymorphism and obesity risk under AA vs GA model

5.5 Analysis of AA vs GG + GA model

Figure 5.5. Forest plot of the association between VDR gene Cdx2 polymorphism and obesity risk under AA vs GG + GA 
model
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5.6 Analysis of GA + AA vs GG model

Figure 5.6. Forest plot of the association between VDR gene Cdx2 polymorphism and obesity risk under GA + AA vs GG 
model

6. Funnel plots

Figure 6.1. Funnel plot of the association between VDR gene BsmI polymorphism and obesity risk under b vs. B model in 
overall

Figure 6.2. Funnel plot of the association between VDR BsmI polymorphism and obesity risk under bb vs. BB model in 
overall
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Figure 6.3. Funnel plot of the association between VDR BsmI polymorphism and obesity risk under Bb vs. BB model in overall

Figure 6.4. Funnel plot of the association between VDR BsmI polymorphism and obesity risk under bb vs. Bb model in overall
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Figure 6.5. Funnel plot of the association between VDR BsmI polymorphism and obesity risk under bb vs. BB+Bb model in 
overall

Figure 6.6. Funnel plot of the association between VDR BsmI polymorphism and obesity risk under Bb+bb vs. BB model in 
overall
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Figure 6.7. Funnel plot of the association between VDR ApaI polymorphism and obesity risk under a vs. A model in overall

Figure 6.8. Funnel plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. AA model in overall
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Figure 6.9. Funnel plot of the association between VDR ApaI polymorphism and obesity risk under Aa vs. AA model in overall

Figure 6.10. Funnel plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. Aa model in overall
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Figure 6.11. Funnel plot of the association between VDR ApaI polymorphism and obesity risk under aa vs. AA+Aa model in 
overall

Figure 6.12. Funnel plot of the association between VDR ApaI polymorphism and obesity risk under Aa+aa vs. AA model in 
overall
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Figure 6.13. Funnel plot of the association between VDR gene FokI polymorphism and obesity risk under f vs. F model in 
overall

Figure 6.14. Funnel plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. FF model 
in overall
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Figure 6.15. Funnel plot of the association between VDR gene FokI polymorphism and obesity risk under Ff vs. FF model 
in overall

Figure 6.16. Funnel plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. Ff model in 
overall
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Figure 6.17. Funnel plot of the association between VDR gene FokI polymorphism and obesity risk under ff vs. FF+Ff 
model in overall

Figure 6.18. Funnel plot of the association between VDR gene FokI polymorphism and obesity risk under Ff+ff vs FF model 
in overall
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Figure 6.19. Funnel plot of the association between VDR gene TaqI polymorphism and obesity risk under t vs. T model in 
overall

Figure 6.20. Funnel plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs. TT model 
in overall
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Figure 6.21. Funnel plot of the association between VDR gene TaqI polymorphism and obesity risk under Tt vs TT model in 
overall

Figure 6.22. Funnel plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs Tt model in 
overall
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Figure 6.23. Funnel plot of the association between VDR gene TaqI polymorphism and obesity risk under tt vs TT + Tt 
model in overall

Figure 6.24. Funnel plot of the association between VDR gene TaqI polymorphism and obesity risk under Tt + tt vs TT 
model in overall
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